งาษวิกยาลัยกุแารแแกย์แห่งประเทศโทย

แนวหางเจชปฏ่บัต การดูแลรักษา

(Cow Milk Protein Allergy)

uS5ณาธิการ

บุษบา วิวัฒน์เวดิน
อุมาพร สุทัศน้วรวฺุ
สุวัฒน์ เบญจพลพิทักษ์

แนวทางเวชปฏัตัต การดูแลรักษา

(Cow Milk

บรรณาธิการ

\author{

- บุษบา วิวัฒน์เวคิน
}

อุมาพร สุทัศน์วรวุฒิ
สุวัฒน์ เบญจพลพิทักษ์

เจ้าของ

ราชวิทยาลัยกุมารแพทย์แห่งประเทศไทย

ราชวิทยาลัยยุมารแพทย์แห่งประเทศไทย ชมรมโรคทางเดินอาหารและโรคตับในเด็กแห่งประเทศไทย

ชมรมโภชนาการเด็กแห่งประเทศไทย สมาคมโรคภูมิแพ้ โรคหืด และวิทยาภูมิคุ้มกันแห่งประเทศไทย

แนวหางเวชปฏบัตั การดูแลรักษา โรดแพัโปรตีนแมวัว (Cow Milk Protein Allergy)

บรรณาธิการ
บุษบา วิวัฒน์เวคิน
อุมาพร สุทัศน์วรวุฒิ สุวัฒน์ เบญจพลพิทักษ์

เจ้าของ

ราชวิทยาลัยกุมารแพทย์แห่งประเทศไทย

จำนวน 104 หน้า
จำนวนพิมพ์ 3,000 เล่ม
ราคา 100 บาท
มีนาคม 2555

พิมพ์ที่

บริษัท เมดิ เจอร์นัล จำกัด

สงวนลิขสิทธิ์
ราชวิทยาลัยกุมารแพทย์แห่งประเทศไทย คณะบรรณาธิการ
1.บุษบา วิวัฒน์เวคิน 2 .อุมาพร สุทัศน์วรวุฒิ 3 .สุวัฒน์ เบญจพลพิทักษ์ พิมพ์ครั้งที่ 1 -กรุงเทพฯ : $2555: 104$ หน้า

คำนำ

หลายคนอาจคิดว่าโรคแพ้โปรตีนนมวัวนั้นพบได้น้อยและไม่น่าจะมีอาการ รุนแรงมากนัก แต่ในความเป็นจริงพบว่า ในปัจจุบันนี้โรคแพ้โปรตีนนมวัว พบได้บ่อยและมีแนวโน้มที่จะมีอุบัติการณ์สูงขึ้นกว่าในอดีต โรคนี้มีอาการ แสดงได้หลายรูปแบบและหลากหลาย ความรุนแรงจากอาการน้อย ๆ หายเองได้ จนถึงขั้นเสียชีวิต หรือเป็นโรคเรื้อรังจนเลี้ยงไม่โต มีปัญหาพัฒนาการช้าและ อ่อนแอ จนกระทบต่อคุณภาพชีวิตทั้งตัวเด็กและครอบครัว มีผลกระทบต่อ สังคมและเศรษฐกิจของประเทศชาติในระยะยาวได้ นอกจากนี้ ยังยากในการ วินิจฉัยโรค เนื่องจากอาการแพ้นั้นคล้ายคลึงกับอาการที่เกิดจากโรคชนิดอื่น ๆ เช่น โรคติดเชื้อ โรคผิวหนัง โรคระบบหายใจ ภาวะทุพโภชนาการ หรือโรค ระบบทางเดินอาหาร เป็นต้น ทั้งนี้เนื่องจากปฏิกิริยาในการแพ้โปรตีนนมวัว นั้น อาจเกิดจาก $\mathrm{IgE}-$ mediated หรือ non-IgE-mediated ที่เป็นปฏิกิริยาเดี่ยว หรือร่วมกันทั้ง 2 อย่างก็ได้

ที่ผ่านมา เมื่อผู้ป่วยมีอาการผิดปกติจากการแพ้โปรตีนนมวัว จะไปรับการ ตรวจรักษากับแพทย์ทั่วไป กุมารแพทย์ หรือกุมารแพทย์ผู้เชี่ยวชาญด้านโรค ระบบทางเดินอาหาร ด้านโภชนาการ ด้านโรคภูมิแพ้ หรือด้านอื่นๆ จึงได้รับ ข้อมูลที่แตกต่างกันบ้าง ตามความสนใจและความถนัดของแพทย์ เนื่องจาก ความก้าวหน้าในทางวิชาการที่รวดเร็วและเป็นเฉพาะทางมากขึ้น ประกอบกับ มีความต้องการแนวทางในการบริบาลรักษาผู้ป่วยโรคแพ้โปรตีนนมวัว อย่างมีคุณภาพในระดับสากล องค์กรแพทย์ผู้เชี่ยวชาญที่เกี่ยวข้อง ได้แก่ ชมรมโรคทางเดินอาหารและโรคตับในเด็กแห่งประเทศไทย ชมรมโภชนาการเด็ก แห่งประเทศไทย และสมาคมโรคภูมิแพ้ โรคหืด และวิทยาภูมิคุ้มกันแห่งประเทศไทย จึงได้ร่วมกันประชุมและดำเนินการจัดทำแนวทางเวชปฏิบัติการดูแลรักษา โรคแพ้โปรตีนนมวัวในเด็กนี้ขึ้น โดยผ่านกระบวนการร่างแนวทางเวชปฏิบัติ ตามเวชศาสตร์เชิงประจักษ์ ที่ใช้ข้อมูลการศึกษาทั้งในประเทศไทย และ

ต่างประเทศ และได้นำร่างแนวทางเวชปฏิบัตินี้ ไปนำเสนอเพื่อประชาพิจารณ์ โดยกุมารแพทย์ในที่ประชุมวิชาการของราชวิทยาลัยกุมารแพทย์และสมาคม กุมารแพทย์แห่งประเทศไทย นำข้อแนะนำมาปรับปรุงจนได้แนวทางเวชปฏิบัติ ที่สมบูรณ์ เหมาะสมกับการนำมาใช้เป็นแนวทางในการวินิจจัย ดูแลรักษา ผู้ง่วยเด็กโรคแพ้โปรตีนนมวัวในบริบทของสังคมไทย

เนื่องจากมีแพทย์หลายสาขาที่มีโอกาสตรวจรักษาผู้ป่วยโรคแพ้โปรตีน นมวัว แนวทางเวปฏฏิบัตี้นึ้งไม่ถือเป็นกฎเกณฑ์ตายตัวในการวินิจฉัยและ รักษาผู้ป่วยยโรคแพ้โปรตีนนมวัว แพทย์ผู้ทำการดููเลรักษาผู้ป่วยควรพิจารณา ใช้เป็นแนวทางในการวางแผนการวินิจจัยโรค วางแผนการรักษาโรคให้ เหมาะสมกับปัญหาของผู้ป้วยและครอบครัว ในแต่ละรายได้ตามความ เหมาะสม

คณะบรรณาธิการขอขอบคุณผู้เชี่ยวชาญทุกท่านและผู้เกี่ยวข้องทุกฝ่าย ที่ได้ร้วมมือกันจัดทำแนวทางเวชปฏิบัตินื้จนสำเร็จ และหวังเป็นอย่างยิ่งว่า แนวทางเวชปฏิบัติการดูแลรักษาโรคแพ้โปรตีนนมวัว ฉบับแรกในประเทศ ไทยนี้ จะได้รับการนำไปใช้อย่างแพร่หลายเพื่อประโยชน์ต่อผู้ป่ปวยเด็กไทย ที่มีปีญหาแพ้โปรตีนนมวัว ในอนาคตเมื่อมีความก้าวหน้ำจกกงนวิจัยใหม่ ๆ และมีคำแนะนำจากผู่ใช้ จะมีการปรับปรุงแนวทางเวชปฏิบัตินี้ให้ทันสมัย ต่อไป

บรรณาธิการ
บุษบา วิวัฒน์เวคิน
อุมาพร สุทัศน์วรรวุฒิ สุวัฒน์ เบญจพลพิทักษ์

สารบัญ

- แนวทางเวชปฏิบัติ การดูแลรักษาโรคแพ้โปรตีนนมวัว (Cow milk protein allergy)
- นิยาม 15
- อุบัติการณ์ 16
- การวินิจฉัยโรค 16
- แผนภาพแสดงขั้นตอนการวินิจฉัยโรคแพ้โปรตีนนมวัว 28
- การตรวจพิเศษเพื่อการวินิจฉัยและติดตามอาการ 31
- การรักษาโรคแพ้โปรตีนนมวัว 32
- การพยากรณ์โรค 35
- ภาคผนวก 45

ภาคผนวกที่ 1
การตรวจพิเศษเพื่อการวินิจฉัยและติดตามอาการ 47
ภาคผนวกที่ 2
ผลิตภัณท์ที่ควรหลีกเลี่ยงในผู้ที่แพ้โปรตีนนมวัว
และผลิตภัณฑ์ที่ใช้ทดแทนนมวัว 61
ภาคผนวกที่ 3
ตัวอย่างแหล่งอาหารของแคลเซียม 70
ภาคผนวกที่ 4
การรักษาโรคแพ้โปรตีนนมวัวในทารกที่เลี้ยงด้วยนมแม่ 75
ภาคผนวกที่ 5
ข้อมูลของผลิตภัณฑ์นมที่ใช้ในการรักษาโรคแพ้โปรตีนนมวัว 79

คณะกรรมการบริหาร

ชมรมโรคทางเดินอาหารและโรคตับในเด็กแห่งประเทศไทย

พ.ศ. $2549-2553$

ที่ปร้กษา

ประธาน
รองประธาฟที่ 1
รองประธานที่ 2
เลขาธิการ
ผ้ช่วยเลขาธิการ
เทรัญญญைก
ผู้่วยแหรัญปญิก
ฝ่ายวชาการและการอบรมแผทย่ประจำข้าน
内้ยโรคตับ
内ายวจัยและสารสนแทศ
ฝ่ายทะเบียน
ฝ่ายประชาสัมพันธ์และรายได้
ฝ่ายเอนโดสโคโีย์

กรรมการ

พญ.วันดี วราวิทย์ พญ.จิราศรี วัชรดุลย์ พญ.บุษบา วิวัฒน์เวคิน พญ.สำตวน วงศ์สวัสดิ์ นพ.ประพันธ์ อ่านเปร่อง พญ.นิยะดา วิทยาศัย พญ.ศิริลักษณ์ เจนนุวัตร พญ.พรพิมล พัวประดิษฐ์ พ.ท.หญิง นภอร ภาวิจิตร พญ.สุพร ตรีพงษ์กรุณา นพ.ยง ภู่วรวรรณ นพ.ณัฐพงษ์ อัครผล นพ.ไพโรจน์ จงบัญญั๊ิิเจริญ พญ.สุภา หริกุล น.อ.หญิง ปัญจจัตร รัตนมงคล พญ.วรนุช จงศรีสวัสดิ์ พญ.เพ็ญศรี โควสุวรรณ นพ.เสกสิต โอสถากุล พญ.เกศรา อัศคามงคล นพ.ภิเษก ยิ้มแย้ม
พญ.ปานียา เพียรวิจิตร
นพ. นิพัทธ์ สีมาขจร
นพ.สงวนศักต์์ ถกษ์ศุภผล
พญ.ศุกระวรรณ อินทร์ขาว

คณะกรรมการบริหาร

ชมรมโภชนาการเด็กแห่งประเทศไทย

พ.ศ. 2551-2553

ประธาน
ประธานแต่งตั้ง
เลขาธิการ
เหรัญญิก
ปฏิคม
ฝ่ายวิชาการ
นายทะเบียน
กรรมการ

พญ.อุมาพร สุทัศน์วรวุฒิ
นพ.ไพบูลย์ เอกแสงศรี
พญ.สุภาพรรณ ตันตราชีวธร
พญ.สุนทรี รัตนชูเอก
นพ.ไพบูลย์ เอกแสงศรี
ดร.พญ.นลินี จงวิริยะพันธุ์
พญ.นฤมล เด่นทรัพย์สุนทร
นพ.เพียรวิทย์ ตันติแพทยางกูร นพ.ชาญชัย พานทองวิริยะกุล นพ.ประสงค์ เทียนบุญ นพ.พิภพ จิรภิญโญ
พล.ต.หญิง ภาวดี กุญชรานุสสรณ์ พญ.ลัดดา เหมาะสุวรรณ นพ.สงวนศักดิ์ ฤกษ์ศุภผล นพ.สังคม จงพิพัฒน์วณิชย์ พญ.มณีรัตน์ ภูวนันท์
พ.อ.เรืองวิทย์ ตันติแพทยางกูร
ตร.พญ.ศิรินุช ชมโท
พญ.ชนกานต์ กังวานพรศิริ
พญ.อรวรรณ เอี่ยมโอภาส
พญ.พัชราภา ทวีกุล
พญ.อรพร ดำรงวงศ์ศิริ

คณะกรรมการบริหาร

สมาคมโรคภูมิแพ้ โรคหีด และวิทยาภูมิคุ้มกันแห่งประเทศไทย พ.ศ. 2553-2555

นายกสมาคม
อดีตนายกสมัยล่าสุด
ผู้รั้งตำแหน่งนายก
อุปนายกคนที่ 1
อุปนายกคนที่ 2
เลขาธิการ
เหรัญญิก
ปฏิคม
นายทะเบียน
ประธานวิชาการด้านโรคภูมิแพ้
ประธานวิชาการด้านวิทยาภูมิคุ้มกัน
ประธานวารสาร
ฝ่ายประชาสัมพันธ์
ฝ่ายสมาชิกสัมพันธ์
ฝ่ายวิเทศสัมพันธ์

นพ.สุวัฒน์ เบญจพลพิทักษ์ นพ.ปกิต วิชยานนท์ นพ.เกียรติ รักษ์รุ่งธรรม
พญ.จรุงจิตร์ งามไพบูลย์
ดร.วัชระ กสิณฤกษ์
นพ.วสุ กำชัยเถียร
พญ.ทิชา ลิ้มสุวรรณ
พญ.สุกัญญา โพธิกำจร
น.ท.หญิง ศศวรรณ ชินรัตนพิสิทธิ์
พญ.พรรณทิพา ฉัตรชาตรี
ดร.สุรศักดิ์ วงศ์รัตนชีวิน
พญ.ฉวีวรรณ บุนนาค
พญ.อรพรรณ โพชนุกูล
พญ.ลินน่า งามตระกูลพานิช
ดร.ธนาภัทร ปาลกะ

รายนามคณะทำงานการจัดทำ

 แนวทางเวชปฏิบัติการดูแลรักษาโรคแพ้โปรตีนนมวัว ชมรมโรคทางเดินอาหารและโรคตับในเด็กแห่งประเทศไทย1. พญ.กิติยา เศรษฐไกรสิงห์
2. นพ.ณัฐูพงษ์ อัครผล
3. พ.ท.หญิง นภอร ภาวิจิตร
4. พญ.นิยะดา วิทยาศัย
5. พญ..ุุษบา วิวัฒน์เวคิน
6. นพ.ประพันธ์ อ่านเปรื่อง
7. น.อ.หญิง ปัญจฉัตร รัตนมงคล
8. พญ..พลิตถิยา สินธุเสก
9. พญ.พัชร เกียรติสารพิภพ
10. พญ.พัชรินทร์ อมรวิภาส
11. พญ.เพ็ญศรี โควสุวรรณ
12. พญ.เมรินี ตันนุกิจ
13. พญ.รพีพร หล่อชัชวาลกุล
14. พญ.ศิริลักษณ์ เจนนววัตร
15. พญ.ศุกระวรรณ อินทรขาว
16. พญ.สุชีรา หงษัสกุล
17. พญ.สุพร ตรีพงษ่กุรุณา
18. พ.ท.อนันดร วงศ์ธีระสุต

รายนามคณะทำงานการจัดทำ แนวทางเวชปฏิบัติการดูแลรักษาโรคแพ้โปรตีนนมวัว ชมรมโภชนาการเด็กแห่งประเทศไทย
1.พญ.ซนกานต์ กังวานพรศิริ
2.นพ.ชาญชัย พานทองวิริยะกุล
3.ดร.พญ.นลินี จงวิริยะพันธุ์
4.พญ.นฤมล เด่นทรัพย์สุนทร
5.นพ.ประสงค์ เทียนบุญ
6.พญ.พัชราภา ทวีกุล
7.นพ.พิภพ จิรภิญโญ
8.นพ.เพียรวิทย์ ตันติแพทยางกูร
9.นพ.ไพบูลย์ เอกแสงศรี
10.พล.ต.หญิง ภาวดี กุญชรานุสสรณ์
11.พญ.มณีรัตน์ ภูวนันท์
12.พ.อ.เรืองวิทย์ ตันติแพทยางกูร
13.พญ.ลัดดา เหมาะสุวรรณ
14.ดร.พญ.ศิรินุชชมโท
15.นพ.สงวนศักดิ์ ถกษ์ศุภผล
16.นพ.สังคม จงพิพัฒน์วณิชย์
17.พญ.สุภาพรรณ ตันตราชีวธร
18.พญ.สุนทรี รัตนชูเอก
19.พญ.อรพร ดำรงวงศ์ศิริ
20.พญ.อรวรรณ เอี่ยมโอภาส
21.พญ.อุมาพร สุทัศน์วรวุฒิ

รายนามคณะทำงานการจัดทำ แนวทางเวชปฏิบัติการดูแลรักษาโรคแพ้โปรตีนนมวัว สมาคมโรคภูมิแพ้ โรคหีด และวิทยาภูมิคุ้มกัน

1. พล.อ.ต.หญิง กณิกา ภิรมย์รัตน์
2. พญ.จรุงจิตร์ งามไพบูลย์
3. พญ.นริศรา สุรทานต์นนท์
4. พญ.นวลอนงค์ วิศิษฎสุนทร
5. พญ.ปนัดดา สุวรรณ
6. พญ.ปิยวดี เลิศชนะเรืองฤทธิ์
7. พญ.พรรณทิพา ฉัตรชาตรี
8. พญ.พลาณี วัฒนาสุรกิตต์
9. พญ.ภาสุรี แสงศุภวานิช
10. พญ.มุกดา หวังวีรวงศ์
11. พญ.มุทิตา ตระกูลทิวากร
12. นพ.สุวัฒน์ เบญจพลพิทักษ์
13. พญ.อรทัย พิบูลโภคานันท์
14. พญ.อรพรรณ โพชนุกูล
15. พ. อ.หญิง อารียา เทพชาตรี

แนวทางเวชญฏบัต การดูแลรักษา

(Cow Milk Protein Allergy)

บรรณาธิการ

บุษบา วิวัฒน์เวคิน
อุมาพร สุทัศน์วรวุฒิ
สุวัฒน์ เบญจพลพิทักษ์

เจ้าของ

ราชวิทยาลัยกุมารแพทย์แห่งประเทศไทย

แนวทางเวชปฏิบัติ การดูแลรักษาโรคแพ้โปรตีนนมวัว

(Cow Milk Protein Allergy)

นิยาม

เมื่อกล่าวถึงการแพ้อาหาร บุคคลทั่วไปมักเข้าใจว่าอาการไม่พึงประสงค์ ทั้งหมดที่เกิคขึ้นหลังการรับประทานอาหาร คือ การแพ้อาหารแต่ความจริงแล้ว อาการที่เกิดขึ้นหลังการรับประทานอาหาร อาจเกิดจากปฏิกิริยาการแพ้หรือ ไม่ใช่ก็ได้ อาการอันไม่พึงประสงค์หลังการรับประทานอาหาร (adverse food reactions) แบ่งเป็น 2 ประเภท ดังนี้

1. Non-immune-mediated adverse food reactions หรือ food intolerance เป็นอาการที่ไม่ได้เกิดจากปฏิกิริยาทางภูมิคุ้มกัน ได้แก่

- ความผิดปกติทางเมตาบอลิซึม เช่น lactase deficiency, galactosemia, phenylketonuria และ pancreatic insufficiency เป็นต้น
- ฤทธิ์ทางเภสัชวิทยาของส่วนประกอบของอาหาร เช่น caffeine, histamine และ tyramine เป็นต้น
- สารพิษและสิ่งปนเปี้อนในอาหาร เช่น สารปรุงรส สีผสมอาหาร เชื้อก่อโรค ที้อกซินของเชื้อแบคทีเรียหรือเชื้อรา และโลหะหนัก เป็นต้น

2. Immune-mediated adverse food reactions หรือ food allergy คือ อาการ แสดงที่เกิดขึ้นจากปฏิกิริยาทางภูมิคุ้มกันที่แสดงอาการแพ้ภายใน $1-3$ ชั่วโมง หรือภายใน 3 วัน หลังจากได้รับอาหารที่แพ้

การแพ้อาหารแบ่งตามกลไกการเกิดโรคได้ 3 กลุ่ม ดังนี้
2.1 IgE-mediated type
2.2 Non-IgE-mediated (cell-mediated) type
2.3 Mixed IgE- and cell-mediated type

โรคแพ้โปรตีนนมวัว (cow milk protein allergy, CMPA) คือ อาการ ผิดปกติหลังการรับประทานนมที่เกิดจากปฏิกิริยาทางภูมิคุ้มกัน ซึ่งอาจเป็น $\mathrm{IgE}-$ mediated, non-IgE-mediated หรือ mixed type ก็ได้

การแพ้อาหารพบในทารกมากกว่าเด็กโตและผู้ใหญ่ เนื่องจากระบบ ภูมิ คุ้มกันและระบบทางเดินอาหารของทารกยังพัฒนาไม่สมบูรณ์ กระเพาะอาหารของทารกมีภาวะเป็นกรดน้อยกว่า มี secretory $\operatorname{lgA}(\mathrm{sIgA})$ ต่ำ น้ำย่อยในลำไส้เล็กและตับอ่อนน้อยกว่าผู้ใหญ่ ทำให้ย่อยโปรตีนได้ไม่ดี นอกจากนี้เยื่อบุลำไส้ของทารกยังยอมให้โมเลกุลของโปรตีนผ่านเข้าไปใน กระแสเลือด กระตุ้นการสร้าง IgE และ T -lymphocyte ทำให้เกิดอาการแพ้ได้ หลังอายุ 2 ปีระบบภูมิคุ้มกันและทางเดินอาหารของเด็กจะพัฒนาขึ้น ซึ่งสัมพันธ์กับการพบการแพ้อาหารน้อยลงในเด็กโตและผู้ใหญ่ 1 อาหารที่เป็นสาเหตุของ การแพ้อาหารมากที่สุดในทารก ได้แก่ นมวัว ไข่ และถั่วเหลือง ส่วนข้าวสาลีเริ่มพบบ้าง ในคนไทย 1,2

อุบัติการณ์

มีรายงานความชุกและอุบัติการณ์ของโรคแพ้โปรตีนนมวัวอยู่ในช่วง ระหว่างร้อยละ $0.5-5.4$ ขึ้นอยู่กับวิธีการวินิจฉัย ${ }^{3-10}$ สำหรับการศึกษา ในประเทศไทยพบความชูก ของโรคแพ้โปรตีนนมวัวอยู่ที่ร้อยละ 1.7^{2}

การวินิจฉัยโรค

การซักประวัติ
เป็นส่วนที่มีความสำคัญที่สุดในการวินิจฉัยโรคแพ้โปรตีนนมวัว ประวัติ ที่ควรถามมีดังนี้ 11,12

- อายุ่ที่เริ่มมีอาการ
- อาการและอาการแสดง
- ปริมาณและชนิดของนมวัวที่รับประทานแล้วเกิดอาการ
-ระยะเวลาที่เกิดอาการหลังจากรับประทานนมวัว
- ประวัติอาการแพ้ครั้งล่าสุด รวมทั้งการรักษาที่ได้รับ
- ประวัติอาการแพ้ครั้งที่มีอาการรุนแรงมากที่สุด รวมทั้งการรักษที่ใด้รับ
- ประวัติโรคภูมิแพ้ (asthma, atopic dermatitis และ allergic rhinitis) ของ ผู้ป่วยและครอบครัว โดยเฉพาะญูาติสายตรง (first-degree relatives)
- ประวัติการเจริญเติบโต
- ปริมาณและชนิดนมวัวที่มารตารับประทานขณะตั้งครรร์และให้นมบุตร ${ }^{13}$ อาการแสดง
ความชุกของอาการแสดงในแต่ละกลุ่มอาจแตกต่างกันตามกลุ่มประชากร วิธีการเก็บข้อมูล และแหล่งที่มาของข้อมูล ${ }^{12,13}$ โดยพบอาการแสดงในระบบ ทางเดินอาหารร้อยละ $22.5-60$ ผิวหนังร้อยละ $5-90$ ทางเดินหายใจร้อยละ $15-43.2$ และแพ้แบบรุนแรงเฉียบพลันว้อยละ $0.2-9$

ผู้ป่วยยที่แพ้โปรตีนนมวัวส่วนมากมักมีอาการแสดงตั้งแต่ 2 ระบบขึ้นไป และโดยมากมักเกิดภายใน 1 ศัปดาห์นลังได้รับนมวัว ${ }^{14}$ จำเป็นต้องวินิจจัย แยกโรคอื่น ที่อาจมาด้วยอาการแสดงเดียวกัน อาการแสดง ลักษณะทางคลินิก และการดำเนินโรคขของโรคแพ้โปรตีนนมวัวดังแสดงในตารางที่ 1 และ 2 ส่วน อาการแพ้รุนแรงที่ควรจะส่งต่อไปยังผู้เชี่ยวชาญหรือพิจารณาการรักษา เบื้องต้น ตังแสดงในตารางที่ 3

ตารางที่ 1 อาการแสดงของโรคแพ้โปรตีนนมวัวแบ่งตามกลไกการแพ้ (ดัดแปลงจากเอกสารอ้างอิงหมายเลข $11,12,15,16$)

IgE-mediated type: อาการเกิดหลังจากรับประทานและ/หรือสัมผัสกับ นมวัว ภายในเวลาไม่เกิน 2 ชั่วโมง ได้แก่

1. อาการแพ้แบบรุนแรงเฉียบพลันทั่วตัว (anaphylaxis)
2. อาการแสดงทางระบบทางเดินอาหาร
2.1 ริมฝีปากบวม oral allergy syndrome
2.2 อาเจียนและถ่ายเหลวแบบเฉียบพลัน (immediate gastrointestinal allergy)

3. อาการแสดงทางผิวหนัง

3.1 ผื่นลมพิษและเนี้อเยื่อใต้ผิวหนังบวมแบบเฉียบพลัน (urticaria และ angioedema)
3.2 ผื่นลมพิษหลังจากสัมผัสกับนมวัว (contact urticaria)
4. อาการแสดงทางระบบทางเดินหายใจ
4.1 น้ำมูกไหล ไอแห้ง (rhinitis, dry cough)
4.2 คัดจมูก อ้าปากหายใจ นอนกรน จากการอุดกั้นของทางเดินหายใจ ส่วนบน (laryngeal obstruction)
4.3 หายใจมีเสียงวี้ด หอบ (wheezing, dypsnea)

Mixed type: กลุ่มที่กลไกการแพ้เป็นทั้งแบบ lgE-mediated และ non- $\operatorname{IgE}-$ mediated อาการอาจเกิดขึ้นภายในเวลาเป็นนาที เป็นชั่วโมงหรืออาจเป็นวัน ได้แก่

1. อาการแสดงทางระบบทางเดินอาหาร

Eosinophilic gastrointestinal disorders (ประกอบด้วย allergic eosinophilic esophagitis และ allergic eosinophilic gastroenteritis)
2. อาการแสดงทางผิวหนัง

ผื่นผิวหนังอักเสบภูมิแพ้ (atopic dermatitis)

Non-IgE-mediated type: อาการเกิดขึ้นหลังจากรับประทาน และ/หรือ สัมผัสกับนมวัว ภายในเวลาหลายชั่วโมงหรืออาจเป็นวัน ได้แก่

1. อาการแสดงทางระบบทางเดินอาหาร
1.1 Food protein-induced enterocolitis syndrome (FPIES)
1.2 Allergic proctocolitis
1.3 Cow milk sensitive enteropathy
2. อาการแสดงทางระบบทางเดินหายใจ

Food-induced pulmonary hemosiderosis (Heiner syndrome)

กลุ่มอาการที่กลไกไม่ชัดเจน: ยังไม่มีหลักฐานแน่ชัดว่าสัมพันธ์กับโรคแพ้ โปรตีนนมวัว ได้แก่

1. กรดไหลย้อน (gastro-esophageal reflux)
2. ท้องผูก
3. Infantile colic
ตารางที่ 2 ลักษณะทางคลินิกและการดำเนินโรคของโรคแพ้โปรตีนนมวัวแยกตามกลุ่มอาการ (ดัดแปลงจากเอกสารอ้างอิงหมายเลข $12,17,18$)

IgE-mediated type						
กลุ่มอาการ	ระยะเวลาที่เริ่ม แสดงอาการ แพ้หลังสัมผัส นมวัว	อายุที่เริ่ม มีอาการ	ลักษณะอาการทางคลินิก	โอกาสเกิด ในผู้ป่วยที่ ได้รับเฉพาะ นมแม่	อายที่น่าจะ เริ่มหาย	การตรวจวินิจฉัย ทางคลินิก
แพ้เฉียบพลัน ที่ไม่รุนแรง (Non- anaphylaxis)	ทันที หรือ ภายในไม่เกิน 2 ชั่วโมง	ทุกอายุ	มีอาการแสดงเพียงระบบเดียว ได้แก่ ทางเดินอาหาร: อาเจียน ถ่ายเหลว ผิวหนัง: ลมพิษ ตาบวม ผื่นลมพิษหลังจาก สัมผัสกับนมวัว ทางเดินหายใจ: น้ำมูกไหล ไอแห้ง คัดจมูก หายใจมีเสียงวี้ด หอบ	พบได้	ร้อยละ 80 หายเมื่อ อายุ 3 ปี	- Skin prick test - Specific IgE - Oral food challenge
Anaphylaxis	ทันที หรือ ภายในไม่เกิน 2 ชั่วโมง	ทุกอายุ	มีอาการแพ้รุนแรงตั้งแต่ 2 ระบบ ขึ้นไป่ หรือมีความดันโลหิตต่ำ โดยที่ไม่มีอาการทางระบบอื่น	พบน้อยมาก	ร้อยละ 80 หายเมื่อ อายุ 3 ปี	- Skin prick test - Specific IgE

Mixed type						
กลุ่มอาการ	ระยะเวลาทีเริม แสดงอาการ แพ้หลังสัมผัส นมวัว	อายุที่เริ่ม มีอาการ	ลักษณะอาการทางคลินิก	โอกาสเกิด ในผู้ป่วยที่ ได้รับเฉพาะ นมแม่	อายุที่น่าจะ เริมหาย	การตรวจวินิจฉัย ทางคลินิก
Eczema	อาจเป็นนาที หรือชั่วโมง หรือวัน	มักแสดง อาการ ภายใน ขวบปีแรก	ผื่นแดงคันตามตัว การกระจายตัวของผื่น มักเป็นที่แก้มและข้อพับ แขนขา ขึ้นอยู่กับอายุ ของคนไข้	พบได้	ไม่แน่นอน มีแนวโน้ม ว่าดีขึ้นตามอายุ ที่เพิ่มขึ้น	- Skin prick test - Specific IgE - Elimination และ re-challenge
Allergic eosinophilic esophagitis	เป็นวัน	ทุกอายุ	อาเจียนเรื้อรัง เบื่ออาหาร กลืนติด ไม่ตอบสนองต่อ การรักษาด้วยยาลดกรด ต้องวินิจฉัยแยกจาก โรคกรดไหลย้อน	ยังไม่เคย มีรายงาน	ไม่ทราบ แน่นอน	- Skin prick test - Specific IgE - Elimination และ re-challenge - Endoscopy และ histology

Mixed type						
กลุ่มอาการ	ระยะเวลาที่เริ่ม แสดงอาการ แพ้หลังสัมผัส นมวัว	อายที่เริ่ม มีอาการ	ลักษณะอาการทางคลินิก	โอกาสเกิด ในผู้ป่วยที่ ได้รับเฉพาะ นมแม่	อายุที่น่าจะ เริมหาย	การตรวจวินิจฉัย ทางคลินิก
Allergic eosinophilic gastroenteritis	อาจเป็น ชั่วโมง หรือเป็นวัน	ทุกอายุ	อาเจียนปวดท้อง ถ่ายเหลวเรื้อรัง น้ำหนักลด	พบได้	ไม่ทราบ แน่นอน	- Skin prick test - Specific IgE - Elimination และ re-challenge - Small bowel biopsy

Non-IgE-mediated type						
กลุ่มอาการ	ระยะเวลาที่เริ้ม แสดงอาการ แพ้หลังสัมผัส นมวัว	อายุที่เริ่ม มีอาการ	ลักษณะอาการทางคลินิก	โอกาสเกิด ในผู้ป่วยที่ ได้รับเฉพาะ นมแม่	อายุที่น่าจะ เริมหาย	การตรวจวินิจฉัย ทางคลินิก
Allergic proctocolitis	อาจเป็น ชั่วโมง หรือเป็นวัน	มักแสดง อาการ ในทารก อายุ น้อยกว่า 6 เดือน	ถ่ายอุจจาระปนมูกเลือด ตรวจอุจจาระไม่พบการติดเชื้อ อาการดีขึ้นชัดเจนภายใน 72 ชั่วโมงหลังงดนมวัว	พบได้	ส่วนมากหาย เมื่ออายุ 1 ปี	ใช้ประวัติเป็นสำคัญ อาจพิจารณาทำ rectal biopsy ในกรณีที่ไม่แน่ใจ
Cow milk sensitive enteropathy	อาจเป็น ชั่วโมง หรือเป็นวัน	แรกเกิด ถึง 2 ปี	ถ่ายเหลวเรื้อรัง น้ำหนักน้อย ซีดจากขาดธาตุเหล็ก และ บวมจากอัลบูมินที่ต่ำจาก ภาวะ protein-losing enteropathy	พบได้	ส่วนมากหาย เมื่ออายุ 3 ปี	Small bowel biopsy

Non-IgE-mediated type						
กลุ่มอาการ	ระยะเวลาที่เริ่ม แสดงอาการ แพ้หลังสัมผัส นมว้ว	อายที่เริ่ม มีอาการ	ลักษณะอาการทางคลินิก	โอกาสเกิด ในผู้ป่วยที่ ได้ร้บเฉพาะ นมแม่	อายุที่น่าจะ เริมหาย	การตรวจวินิจฉัย ทางคลินิก
FPIES (Food proteininduced enterocolitis syndrome)	$2-4 \text { ชั่วโมง }$	มักแสดง อาการ ภายใน ขวบปีแรก	อาเจียนรุนแรง ถ่ายเหลว ปริมาณมาก อาจมีภาวะขาดน้ำ มากจนช็อก มักตอบสนองดีต่อ การให้สารน้ำ อาการอาจคล้ายคลึง กับการติดเชื้อในกระแสโลหิต	ไม่พบ	ส่วนมากหาย เมื่ออายุ 3 ปี	ใช้ประวัติเป็นสำคัญ ไม่มีการตรวจทาง ห้องปฏิบัติการที่ช่วย ยืนยันการวินิจฉัย
Food-induced pulmonary hemosiderosis (Heiner syndrome)	อาจเป็นวัน หรือสัปดาห์	มักแสดง อาการ ภายใน ขวบปีแรก	มี recurrent pulmonary infiltration อาจมีภาวะซีดจาก การขาดธาตุเหล็กเนื่องจาก pulmonary hemorrhage อาจมีอาการทาง upper respiratory tract หรือมี failure to thrive ร่วมด้วย	ไม่พบ	ไม่ทราบ แน่นอน	ตรวจพบ iron-laden macrophages จาก bronchoalveolar lavage, gastric washing หรือ lung biopsy ยืนยันการวินิจฉัย จากการงดุนมวัวแล้ว อาการดีขึ้นร่วมกับ ผล milk precipitin test เป็นบวก

Uncertain						
กลุ่มอาการ	ระยะเวลาที่เริ่ม แสดงอาการ แพ้หลังสัมผัส นมวัว	อายุที่เริ่ม มีอาการ	ลักษณะอาการทางคลินิก	โอกาสเกิด ในผู้ป่วยที่ ได้รับเฉพาะ นมแม่	อายุที่น่าจะ เริมหาย	การตรวจวินิจฉัย ทางคลินิก
Cow milk proteininduced GERD	อาจเป็น ชั่วโมง หรือเป็นวัน	มักแสดง อาการ ภายใน ขวบปีแรก	อาเจียนภายใน 1 สัปดาห์หลัง ได้รับนมวัว อาการแยกไม่ได้ จาก primary gastroesophageal reflux (GER) อาการดีขึ้นบ้าง จากยาลดกรด อาการดีขึ้นชัดเจน ภายใน $2-4$ สัปดาห์ หลังงดนมวัว	พบได้	12-18 เดือน	- Endoscopy - 24-hour pH monitoring - Elimination และ re-challenge
Colic	อาจเป็น ชั่วโมง หรือเป็นวัน	$\begin{gathered} 3-6 \\ \text { สัปดาห์ } \end{gathered}$	ร้องกวนเป็นพัก ๆ สัมพันธ์กับ การได้รับนมวัว อาการเป็น ต่อเนื่องหลังอายุ 4 เดือน อาการดีขึ้นชัดเจนภายใน 1 สัปดาห์หลังงดนมวัว	พบได้	4-6 เดือน	Elimination และ re-challenge

(1) $\dot{4}$

Uncertain						
กลุ่มอาการ	ระยะเวลาที่เริ่ม แสดงอาการ แพ้หลังสัมผัส นมวัว	อายที่เริ่ม มีอาการ	ลักษณะอาการทางคลินิก	โอกาสเกิด ในผู้ป่วยที่ ได้รับเฉพาะ นมแม่	อายุที่น่าจะ เริมหาย	การตรวจวินิจฉัย ทางคลินิก
Constipation	อาจเป็น ชั่วโมง หรือเป็นวัน	มักแสดง อาการ ภายใน ขวบปีแรก	ท้องผูกในทารกอายุน้อยหรือ อาการรุนแรงสัมพันธ์กับการ ได้รับนมวัว อาจมีอาเจียน ร้องกวน ถ่ายเหลวร่วมด้วย พบลักษณะการอักเสบ บวมแดง eczema หรือแผลฉีกขาดบริเวณ รอบรูทวาร อาการดีขึ้นชัดเจน ภายใน $2-4$ สัปดาห์หลังงดนมวัว	พบได้	12-18 เดือน	- Elimination และ re-challenge - Rectal biopsy พบลักษณะ eosinophilic proctitis

ตารางที่ 3 อาการแพ้รุนแรง (severe manifestation)

ระบบ	อาการและอาการแสดงที่ตรวจพบ
ทั่วไป	$\begin{array}{l}\text { แพ้แบบรุนแรงเฉียบพลันทั่วตัว (anaphylaxis) } \\ \text { ภาวะโภชนาการ } \\ \text { ระบบทางเดินอาหาร } \\ \text { ภาวะาดสารอาหาร (โรคขาดโปรตีนและพลังงาน } \\ \text { ระดับ 2 และ 3) } \\ \text { น้ำหนักตัวน้อยเนื่องจากอาเจียนและ/หรือถ่ายเหลวเรื้อรัง } \\ \text { ถ่ายเป็นเลือดหรืออาเจียนเป็นเลือดอย่างรุนแรง } \\ \text { มีภาวะซีด มีภาวะอัลบูมินต่ำ } \\ \text { ผืวหนัง }\end{array}$
ผืนผิวหนังอักเสบภูมิแพ้อย่างรุนแรง	
ร่วมกับมีภาวะอัลบูมินต่า หรือซีด	

แผนภาพแสดงขั้นตอนการวินิจฉัยโรคแพ้โปรตีนนมวัว

${ }^{a}$ Refer to a pediatric specialist if severe
${ }^{\mathrm{b}}$ Appendix 1: Diagnostic work up for CMPA
${ }^{c}$ eHF, extensively hydrolyzed formula; AAF, amino acid-based formula

คำอธิบายแผนภาพ

1. ชักประวัติตรวจร่างกาย อาาส่งตรวจทางห้องปฏิบัติการเบื้องต้น เช่น CBC , stool examination, stool occult blood เพื่อใช้แยกโรคที่มีอาการ คล้ายกับโรคแพ้โปรตีนนมวัว
2. หากสงสัยโรคแพ้โปรตีนนมวัว พิจารณาตามตารางที่ 1 และ 2 เพื่อ แยกว่าอาการแสงงของผู้ป่วยอยู่ในกลุ่มอาการ IgE-mediated, non-IgEmediated หรือ mixed type ประเมินความรุนแรงของอากางถ้ามีอาการ หรืออาการแสดงรุนแรง (ตรางที่ 3) แนะนำให้ส่งต่อผู้เี่ยวชาญทุกราย
3. ในกลุ่มอาการ IgE-mediated และ mixed type พิจารณาส่งทดสอบภูมิแพ้ ภูมิแพ้ทางผิวหนัง (skin prick test) หรือส่งตรวจเลือดหา specific IgE ต่อ cow milk (หากทำได้)
3.1 หากผลการทดสอบเป็นบวก หลีกเลี่ยงนมวัวและผลิตภัณท์จกกนมวัว ให้คำแนะนำทางด้านโภชนาการ และนัดประเมินอาการซ้ำทุก $3-6$ เดือน
3.2 หากผลกการทดสอบเป็นลบ ให้พิจารณาทำ diagnostic elimination of diet
4. Diagnostic elimination of diet มีแนวทางดังนี้
4.1 ทารกที่กินนมแม่ พิจารณาให้นมแม่ต่อ โดยมารดางดนมวัวและ ผลิตภัณฑ์จากนมวว
4.2 ทารกที่กินนมผสม พิจารณาเปลี่ยนสูตรนมเป็น eHF (extensively hydrolyzed formula) หรือ AAF (amino acid-based formula)
4.3 กลุ่มอาการ IgE-mediated type แนะนำให้งดนมวัวอย่างน้อย 2 สัปดาห์ ส่วนกลุ่ม mixed type และ non-IgE-mediated type พิจารณางดอย่างน้อย 4 สัปดาท์
4.4 หากงดนมวัวแล้วดีขึ้น พิจารณาทำ oral food challenge test เพื่อ ยืนยันการวินิจฉัยภายในเวลา $4-12$ สัปดาห์
4.5 หากงดนมวัวแล้วอาการไม่ดีขึ้น พิจารณาการวินิจฉัยโรคอื่นที่ไม่ใช่ โรคแพ้โปรตีนนมวัว
5. ดูรายละเอียดในหัวข้อ oral food challenge test
5.1 หากผลการทดสอบเป็นบวก (failed) หลีกเลี่ยงนมวัวและผลิตภัณฑ์ จากนมวัว ให้คำแนะนำทางด้านโภชนาการ รวมทั้งนัดประเมินอาการ ซ้ำทุก 3-6 เดือน
5.2 หากผลการทดสอบเป็นลบ (passed) พิจารณาการวินิจฉัยโรคอื่น ๆ ที่ไม่ใช่โรคแพ้โปรตีนนมวัว
6. การทดสอบภูมิแพ้ทางผิวหนังโดยการสะกิด (skin prick test, SPT)
7. การตรวจ IgE ที่จำเพาะต่ออาหาร (food-specific IgE)
8. การทดสอบการแพ้โปรตีนนมวัวโดยการรับประทาน (oral food challenge test/oral provocation test)
9. การส่องกล้องทางเดินอาหาร (GI endoscopy) เนื่องจากความผิดปกติ ที่พบจากการส่องกล้องทางเดินอาหาร ไม่มีลักษณะจำเพาะยกเว้น eosinophilic esophagitis ดังนั้นการส่องกล้องทางเดินอาหารจึงไม่มีความจำเป็นต้อง ทำในผู้ป่วยที่สงสัยว่าเป็นโรคแพ้โปรตีนนมวัวที่มีอาการระบบทางเดินอาหาร ทุกราย ยกเว้นมีข้อบ่งชี้ดังต่อไปนี้
4.1. ผู้ป่วยที่สงสัยว่าเป็นโรคแพ้โปรตีนนมวัว และไม่ตอบสนองต่อ diet elimination
4.2. ผู้ป่วยที่มีอาการรุนแรง เช่น อาเจียนหรือถ่ายเป็นเลือดป่านกลางถึง รุนแรง ท้องเสียรุนแรงจนมีภาวะขาดสารอาหาร เป็นต้น
4.3. ผู้ง่วยที่สงสัยว่าเป็น eosinophilic esophagitis
4.4. ไม่แน์ใจในการวินิจฉัยโรค

การรักษาโรคแพ้โปรตีนนมวัว

ประกอบด้วยการรักษาตามอาการแสดงต่าง ๆ ทางคลินิก ร่วมกับการรักษา ด้านโภชนาการ
หลักการรักษาด้านโภชนาการในทารกและเด็กที่เป็น
โรคแพ้โปรตีนนมวัว ${ }^{12,14,19-22}$

1. ให้อาหารที่ไม่มีนมวัว ผลิตภัณฑ์จากนมวัว และโปรตีนจากนมวัว (ภาคผนวกที่ 2)
2. ให้อาหารที่มีคุณค่าทางโภชนาการและปลอดภัย
3. รักษาภาวะทุพโภชนาการอย่างเหมาะสมถ้าผู้ป่วยมีภาวะดังกล่าวร่วมด้วย
4. หลังจากผู้ป่วยมีอายุครบ 1 ปี และอาการหายดีแล้วอย่างน้อย 6 เดือน อาจพิจารณา ทำ oral food challenge test ทุก 6 เดือน
5. ในกรณีที่ผู้ป่วยมีอาการรุนแรง ควรส่งต่อผู้ป่วยไปยังกุมารแพทย์ผู้เชี่ยวชาญ ด้านโภชนาการ
6. ติดตามประเมินภาวะโภชนาการและการเจริญเติบโตทุก $3-6$ เดือน การเลือกนมเพื่อรักษาโรคแพ้โปรตีนนมวัว

ทารกและเด็กที่เลี้ยงด้วยนมแม่โดยไม่ได้นมผสม
1.ให้นมแม่ต่อไปและให้แม่งดนมวัว ผลิตภัณฑ์จากนมวัว และอาหารที่มี โปรตีนจากนมวัว (II A)
2. ดูแลให้แม่ได้รับแคลเซียมจากอาหารอย่างเพียงพอแก่ความต้องการ (800 มก./ วัน) (ภาคผนวกที่ 3) ในกรณีที่แม่ได้รับแคลเซียมจากอาหาร ไม่เพียงพอ ควรเสริมยาเม็ดแคลเซียมที่ไม่มีนมวัวเป็นส่วนประกอบ ให้แม่รับประทานตามความเหมาะสม
3. ดูแลให้ทารกและเด็กได้รับแคลเซียมจากนมแม่และอาหารพอเพียงแก่ ความต้องการ (ปริมาณแคลเซียมที่ต้องการตามอายุ ได้แก่ ทารกอายุ $0-5$ เดือน ได้รับพอเพียงจากนมแม่อย่างเดียว, ทารกอายุ $6-11$ เดือน 270 มก. /วัน, เด็กอายุ $1-3$ ปี

500 มก. /วัน, เด็กอายุ $4-8$ ปี 800 มก. /วัน, เด็กและวัยรุ่นอายุ $9-18$ ปี 1,000 มก./วัน)
4. ถ้าอาการไม่ดีขึ้นให้พิจารณาทบทวนการวินิจััยโรคอื่นหรือผู้ป่วยแพ้อาหาร ชนิดอื่นด้วย โดยแนะนำให้มารดางดอาหารที่แพ้ง่ายอื่น ๆ
5. กรณีมารดาไม่สามารถงดนมวัว ผลิตภัณท์จากนมวัว และอาหารที่มีโปรตีน จากนมวัวได้ อาจพิจารณาให้ผู้ป่วยรับประทานนมสูตรสำหรับรักษาโรค แพ้โปรตีนนมวัว ยกเว้นในกรณี allergic proctocolitis ที่อาการไม่รุนแรง อาจพิจารณาให้นมแม่ต่อไปได้ (IV B) (ภาคผนวกที่ 4)

ทารกและเด็กที่เลี้ยงด้วยนมผสม

1.เลือกนมที่ไม่มีโปรตีนจากนมวัวทดแทนนมผสมที่ทารกและเด็กได้รับ โดยพิจารณาจากความรุนแรงของอาการแสดงทางคลินิก อายุของผู้ป่วย ค่าใช้จ่าย การเข้าถึง และรสชาติ
2. นมทดแทนสูตรต่าง ๆหรืออาหารทางการแพทย์ที่ใช้รักษาทารกและเด็ก ที่เป็นโรคแพ้โปรตีนนมวัว มีดังนี้ (ภาคผนวกที่ 5)
2.1 Soy protein-based formula (SF, นมสูตรโปรตีนจากถั่วเหลือง)
2.2 Extensively hydrolyzed formula (eHF , นมสูตรโปรตีนที่ผ่านการ ย่อยอย่างเต็มที่)
2.3 Amino acid-based formula (AA, นมสูตรกรดอะมิโน)
2.4 Modular formula (MF, นมสูตรที่เตรียมสำหรับผู้ป่วยเฉพาะราย)
3. แนวทางในการเลือกนมทดแทนสูตรต่าง ๆ มีดังนี้
3.1 สูตรนมทดแทนในผู้ป่วยโรคแพ้โปรตีนนมวัวที่มีอาการแสดงทาง คลินิกรุนแรง (IV A) โดยไม่เรียงลำดับ

3) MF

ควรส่งต่อผู้ป่วยไปยังกุมารแพทย์ผู้เซี่ยวชาญ ในกรณี anaphylaxis การใช้ นมสูตร MF ควรเป็นความเห็นของกุมารแพทย์ผู้เช่ยวชาญ
3.2 สูตรนมทดแทนในผู้ป่วยโรคแพ้โปรตีนนมวัวที่มีอาการแสดงทาง คลินิกแบบ immediate reaction และ atopic dermatitis ที่ไม่รุนแรง
(IV B) โดยไม่เรียงลำดับ

2) eHF--- ตัํไม่ได้ผล ----> AAF
3.3 สูตรนมทดแทนในผู้ป่วยโรคแพ้โปรตีนนมวัวที่มีอาการแสดงทาง คลินิกแบบ non-IgE- mediated type และ mixed type (IV B)

*ถ้าไม่สามารถหา eHF ได้

4. เด็กอายุมากกว่า 2 ปี และสามารถรับประทานอาหารอื่นๆ ได้อย่างพอเพียง อาจไม่จำเป็นต้องให้นมทดแทน และพิจารณาเสริมยาเม็ดแคลเซียมที่ไม่มี นมวัวเป็นส่วนประกอบ

การพยากรณ์รค

การแพ้นมวัว ส่วนใหญ่เกิดในช่วงวัยทารกโดยเฉพาะช่วง 1 ขวบปีแรกและ อาการจะดีขึ้นจนหายขาดเมื่อเด็กโตขึ้น สามารถกลับมากินนมวัวได้เหมือน คนปกติ ${ }^{4} 23$ การแพ้นมวัวอาจเป็นจุดเริ่มต้นของการเกิดโรคภูมิแพ้อื่น ๆ เช่น โรคหืด โรคเยื่อบุจมูกอักเสบจากภูมิแพ้ เป็นต้น

จากการศึกษา ${ }^{24-29}$ พบว่าทารกอายุ 1 ปีจะเกิด oral tolerance ต่อนมวัว ร้อยละ $30-56$ และเพิ่มเป็นร้อยละ $51-77$ เมื่ออายุ 2 ปี หลังจากนั้นการเกิด oral tolerance เพิ่มเป็นร้อยละ $70-87$ และ $81-95$ เมื่ออายุ 3 และ 5 ปี ตามลำดับ

จากการศึกษาของ Vanto และคณะ ${ }^{30}$ พบว่า เด็กที่แพ้นมวัวแบบ non IgE-mediated จะมี tolerance ต่อนมวัว ร้อยละ 64,92 และ 96 เมื่ออายุ 2,3 และ 4 ปี ตามลำดับ

ส่วนเด็กที่แพ้นมวัวแบบ IgE-mediated จะมี toleranceต่อนมวัว ร้อยละ 31,53 และ 63 เมื่ออายุ 2,3 และ 4 ปี ตามลำดับ

สรุปได้ว่า เด็กแพ้นมวัวที่มีอาการแพ้นมวัวแบบเฉียบพลัน (immediate reactions) จะหายช้ากว่าแบบ delayed reaction โดยพบว่าเด็กที่แพ้แบบ $\mathrm{IgE}-$ mediated ร้อยละ 25 ยังคงแพ้นมวัวเมื่ออายุ 3 ปี และร้อยละ 15 ยังคง แพ้นมวัวหลังอายุ 8.6 ปี ในขณะที่เด็กที่แพ้นมวัวแบบ non- $\mathrm{IgE}-\mathrm{mediated}$ อาการจะดีขึ้นเมื่ออายุ 5 ปี $9,25-30$

สำหรับเด็กที่แพ้นมวัวแบบ allergic proctitis อาการดีขึ้นเมื่ออายุ 6-23 เดือน ${ }^{31}$

ปัจจัยที่ทำให้ผู้ป่วยแพ้นมวัวหายช้า ได้แก่ ผู้ป่วยที่มีอาการทางระบบหายใจ ร่วมกับอาการทางผิวหนังและ/หรือทางเดินอาหาร ผู้ป่วยที่แพ้สารก่อภูมิแพ้ ทางอากาศ มีอาการแพ้อาหารอย่างรุนแรง แพ้อาหารหลายชนิดโดยเฉพาะ เนื้อวัว ไข่ แป้งสาลี ถั่วเหลือง การทดสอบสารก่อภูมิแพ้ทางผิวหนังพบ wheal ขนาดใหญ่ต่อ fresh milk ${ }^{32}$ มีประวัติโรคหืด เยื่อบุจมูกอักเสบจากภูมิแพ้และ ผื่นแพ้ผิวหนังในครอบครัว ${ }^{33}$ ปัจจุบันพบว่า การลดลงของ epitope binding lgE และการเพิ่มขึ้นของ epitope binding IgG_{4} ต่อนมวัวสัมพันธ์กับการเกิด tolerance ${ }^{34}$

ตารางที่ 4 การดำเนินโรคของการแพ้นมวัวแยกตามกลุ่มอาการ (ดัดแปลงจากเอกสารอ้างอิงหมายเลข $12,17,18$)

กลุ่มอาการ (Condition)	อายุที่ควรจะเริ่มหาย (Age of clinical resolution)
IgE-mediated type	
Acute allergic reaction: non-anaphylactic type	ร้อยละ 80 หายเมื่ออายุ 3 ปี
Anaphylaxis	ร้อยละ 80 หายเมื่ออายุ 3 ปี
Mixed-type	
Eczema	ไม่แน่นอน มีแนวโน้มว่าดีขึ้นตามอายุที่เพิ่มขึ้น
Allergic eosinophilic esophagitis	ไม่ทราบแน่นอน
Allergic eosinophilic gastroenteritis	ไม่ทราบแน่นอน
Non-IgE-mediated type	
Allergic proctocolitis	ส่วนมากหายเมื่ออายุ 1 ปี
Cow's milk sensitive enteropathy	ส่วนมากหายเมื่ออายุ 3 ปี
FPIES (Food protein-induced enterocolitis syndrome)	ส่วนมากหายเมื่ออายุ 3 ปี
Food-induced pulmonary hemosiderosis (Heiner syndrome)	ไม่ทราบแน่นอน
Uncertain	
Cow's milk protein induced GERD	12-18 เดือน
Colic	4-6 เดือน
Constipation	12-18 เดือน

เอกสารอ้างอิง

1. Sampson HA. Food allergy. Part I: Immunopathogenesis and clinical disorders. J Allergy Clin Immunol 1999;103:717-28.
2. Santadusit S, Atthapaisalsarudee S, Vichyanond P. Prevalence of adverse food reactions and food allergy among Thai children. J Med Assoc Thai 2005;88(Suppl 8):S27-32.
3. Host A, Halken S, Jacobsen HP, Christensen AE, Herskind AM, Plesner k. Clinical course of cow's milk protein allergy/intolerance and atopic diseases in childhood. Pediatr Allergy Immunol 2002;13(Suppl 15):23-8.
4. Osterballe M, Hansen TK, Mortz CG, Host A, Bindslev-Jensen C. The prevalence of food hypersensitivity in an unselected population of children and adults. Pediatr Allergy Immunol 2005;16:567-73.
5. Venter C, Pereira B, Grundy J, Clayton CB, Roberts G, Higgins B, et al. Incidence of parentally reported and clinically diagnosed food hypersensitivity in the first year of life. J Allergy Clin Immunol 2006;117:1118-24.
6. Venter C, Pereira B, Voigt K, Grundy J, Clayton CB, Higgins B, et al. Prevalence and cumulative incidence of food hypersensitivity in the first 3 years of life. Allergy 2008;63:354-9.
7. Vieira MC, Morais MB, Spolidoro JV, Toporovski MS, Cardoso AL, Araujo GT, et al. A survey on clinical presentation and nutritional status of infants with suspected cow' milk allergy. BMC Pediatr 2010;10:25.
8. Katz Y, Rajuan N, Goldberg MR, Eisenberg E, Heyman E, Cohen A, et al. Early exposure to cow's milk protein is protective against IgE-mediated cow's milk protein allergy. J Allergy Clin Immunol 2010;126:77-82.
9. Host A. Frequency of cow's milk allergy in childhood. Ann Allergy Asthma Immunol 2002;89(6Suppl 1):33-7.
10. Chafen JJ, Newberry SJ, Riedl MA, Bravata DM, Maglione M, Suttorp MJ, et al. Diagnosing and managing common food allergies: a systematic review. JAMA 2010;303;1848-56.
11. Nowak-Wegrzyn A, Sampson HA. Adverse reactions to foods. Med Clin North Am 2006;90:97-127.
12. Fiocchi A, Brozek J, Schunemann H, Bahna SL, von Berg A, Beyer K, et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines. Pediatr Allergy Immunol 2010;21(Suppl 21):1-125.
13. Ngamphaiboon J, Chatchatee P, Thongkaew T. Cow's milk Allergy in Thai children. Asian Pac J Allergy Immunol 2008;26:199-204.
14. Vandenplas Y, Brueton M, Dupont C, Hill D, Isolauri E, Koletzko S, et al. Guidelines for the diagnosis and management of cow's milk protein allergy in infants. Arch Dis Child 2007;92:902-8.
15. American College of Allergy, Asthma, \& Immunology. Food allergy: a practice parameter. Ann Allergy Asthma Immunol 2006;96(3 Suppl 2):S1-S68.
16. Du Toit G, Meyer R, Shah N, Heine RG, Thomson MA, Lack G, et al. Identifying and managing cow's milk protein allergy. Arch Dis Child Educ Pract Ed 2010;95:134-44.
17. Allen KJ, Davidson GP, Day AS, Hill DJ, Kemp AS, Peake JE, et al. Management of cow's milk protein allergy in infants and young children: an expert panel perspective. J Paediatr Child Health 2009;45:481-6.
18. Moissidis I, Chaidaroon D, Vichyanond P, Bahna SL. Milk-induced
pulmonary disease in infants (Heiner syndrome). Pediatr Allergy Immunol 2005;16:545-52.
19. Kemp AS, Hill DJ, Allen KJ, Anderson K, Davidson GP, Day AS, et al. Guidelines for the use of infant formulas to treat cows milk protein allergy: an Australian consensus panel opinion. Med J Aust 2008;188:109-12.
20. ESPGHAN Committee on Nutrition, Agostoni C, Axelsson I, Goulet O, Koletzko B, Michaelsen KF, Puntis J, et al. Soy protein infant formulae and follow - on formulae: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastoenterol Nutr 2006;42:352-61.
21. Bhatia J, Greer F; American Academy of Pediatrics, Committee of Nutrition. Use of soy protein-based formulas in infant feeding. Pediatrics 2008;121:1062-8.
22. Vandenplas Y, De Greef E, Devreker T, Hauser B. Soy infant formula: Is it that bad? Acta Peadiatr 2011;100:162-6.
23. Steinke M, Fiocchi A, Kirchlechner V, Ballmer-Weber B, Brockow K, Hischenhuber C , et al. Perceived food allergy in children in 10 European nations. A randomised telephone survey. Int Arch Allergy Immunol 2007;143:290-95.
24. Bishop JM, Hill DJ, Hosking CS. Natural history of cow milk allergy: clinical outcome. J Pediatr 1990;116:862-7.
25. Saarinen KM, Pelkonen AS, Mäkelä MJ, Savilahti E. Clinical course and prognosis of cow's milk allergy are dependent on milk-specific IgE status. J Allergy Clin Immunol 2005;116:869-75.
26. Carroccio A, Montalto G, Custro N, Notarbartolo A, Cavataio F, D'Amico D, et al. Evidence of very delayed clinical reactions to cow's milk in cow's milk-intolerant patients. Allergy 2000;55:574-9.
27. Wood RA. The natural history of food allergy Pediatrics 2003;111:1631-7.
28. Høst A, Jacobsen HP, Halken S, Holmenlund D. The natural history of cow's milk protein allergy/intolerance. Eur J Clin Nutr 1995;49 (Suppl 1):S13-8.
29. Sampson HA, Burks AW. Adverse reaction to foods. In: Adkinson NF Jr. Bochner BS, Busse WW, Holgate ST, Lemanske RF Jr, Simons FER, editors. Middleton's allergy, principles and practice. 7th ed. Philadelphia: Mosby. 2009. p. 1139-67.
30. Vanto T, Helppilä S, Juntunen-Backman K, Kalimo K, Klemola T, Korpela R, et al. Prediction of the development of tolerance to milk in children with cow's milk hypersensitivity. J Pediatr 2004;144:218-22.
31. Sorea S, Dabadie A, Bridoux-Henno L, Balancon- Morival M, Jouan H, Le Gall E. Hemorrhagic colitis in exclusively breast-fed infants. Arch Pediatr. 2003;10:772-5.
32. Fiocchi A, Terracciano L, Bouygue GR, Veglia F, Sarratud T, Martelli A, et al. Incremental prognostic factors associated with cow's milk allergy outcomes in infant and child referrals: the Milan Cow's Milk Allergy Cohort study. Ann Allergy Asthma Immunol. 2008;101:166-73.
33. Iacono G, Cavataio F, Montalto G, Soresi M, Notarbartolo A, Carroccio A. Persistent cow's milk protein intolerance in infants: the changing faces of the same disease. Clin Exp Allergy. 1998;28:817-23.
34. Savilahti EM, Rantanen V, Lin JS, Karinen S, Saarinen KM, Goldis M, et.al. Early recovery from cow's milk allergy is associated with decreasing IgE and increasing $\operatorname{lgG} 4$ binding to cow's milk epitopes. J Allergy Clin Immunol 2010;125:1315-21.

คำย่อ (Abbreviation)

AAF	Amino acid-based formula
CMPA	Cow milk protein allergy
eHF	Extensively hydrolyzed formula
FPIES	Food protein-induced enterocolitis syndrome
GER	Gastroesophageal reflux
GERD	Gastroesophageal reflux disease
MF	Modular formula
OFC	Oral food challenge test
SF	Soy protein-based formula
SPT	Skin prick test

คำอธิบายการให้น้ำหนักของหลักฐานและระดับของคำแนะนำวิธีปฏิบัติ คุณภาพน้ำหนักของหลักฐานที่นำมาใช้ในการแนะนำวิธีปฏิบัติ
(Level of Evidence)

ระดับ I	หลักฐานได้จากงานวิจัยที่เป็น randomized controlled trials หรือ systematic review ที่ดี อย่างน้อย $\mathbf{1}$ งานวิจัย				
ระดับ II	หลักฐานที่ได้จากการศึกษาที่เป็น non-randomized controlled trials หรือ before \& after clinical trials หรือ cohort studies				
ระดับ III	หลักฐานที่ได้จากการศีกษาที่เป็น case-control studies	$	$	ระดับ IV	หลักฐานที่ได้จากการศึกษาที่เป็น descriptive, case report หรือ case series
:---	:---				
ระดับ V	หลักฐานที่เป็น expert opinion หรือฉันทามติ (consensus) ของคณะ ผู้เชี่ยวชาญ				

คำอธิบายการให้น้ำหนักของหลักฐานและระดับของคำแนะนำวิธีปฏิบัติ ระดับของคำแนะนำวิธีปฏิบัติ

(Grade of Recommendation)

ระดับ A	หลักฐานมีความชัดเจนมากทั้งต้านประสิทธิภาพและผลดีทาง คลินิกอย่างชัดเจน คำแนะนำในระดับนี้ควรได้รับการสนับสนุน ให้นำไปใช้เสมอ
ระดับ B	หลักฐานมีความชัดเจนปานกลางด้านประสิทธิภาพ หรือมี ความชัดเจนมากด้านประสิทธิภาพ แต่มีข้อจำกัดในด้านผลดี ทางคลินิก คำแนะนำในระดับนี้ควรแนะนำให้มีการนำไปใช้
ระดับ C	หลักฐานด้านประสิทธิภาพยังมีไม่เพียงพอที่จะสนับสนุนหรือ ไม่สนับสนุน ข้อแนะนำในการนำไปใช้ หรือหลักฐานด้าน ประสิทธิภาพอาจมีไม่มากกว่าภาวะแทรกซ้อนที่อาจจะเกิดขึ้น ตามมา เช่น พิษของยา หรือราคาของการ ให้ยาป้องกันหรือการ รักษาด้วยริธีอื่น คำแนะนำในระดับนี้จะจัดไว้เป็นแนวทางเลือก อย่างหนึ่ง (optional) ของการรักษา
ระดับ D	หลักฐานมีน้ำหนักมากปานกลางทีแสดงถึงการขาดประสิทธิภาพ หรือหลักฐานมีน้ำหนักมากปานกลางสำหรับผลลัพธ์ของ ผลข้างเคียง คำแนะนำในระดับนี้โดยทั่วไปไม่แนะนำให้มีการ นำไปใช้
ระดับ E	หลักฐานมีน้ำหนักชัดเจนมากในการแสดงถึงการขาดหลักฐาน ด้านประสิทธิภาพ หรือหลักฐานชัดเจนสำหรับผลลัพธ์ของ
ผลข้างเคียง คำแนะนำในระดับนี้ไม่แนะนำให้มีการนำไปใช้เลย	

ภาคผนวก

ภาคผนวกที่ 1 การตรวจพิเศษเพื่อการวินิจฉัยและติดตามอาการ

1.1 การทดสอบผิวหนังโดยการสะกิด (skin prick test, SPT)

การทดสอบผิวหนังโดยการสะกิด เป็นการตรวจที่มีความน่าเชื่อถือ และพบ ผลข้างเคียงที่เกิดขึ้นทั่วร่างกายได้น้อยมาก ใช้เป็นการคัดกรองผู้ป่วยที่สงสัย แพ้อาหารแบบ IgE-mediated อย่างไรก็ตาม หากให้ผลบวก คือขนาดตุ่มนูน (wheal) มากกว่า 3 มิลลิเมตร เมื่อเทียบกับ negative control แปลผลว่าผู้ป่วย มี ggE ที่จำเพาะต่ออาหารชนิดนั้นหรือเรียกว่ามีภาวะ sensitization แต่ไม่ได้ ยืนยันว่าแพ้อาหารชนิดนั้น คืออาจพบมีภาวะ sensitization โดยที่ไม่เกิด อาการแพ้ได้

ในกรณีของการทำ SPT ต่ออาหารนั้น ค่า cut off ของขนาด wheal ที่ 3 มิลลิเมตร มีค่า positive predictive value (PPV) น้อยกว่าร้อยละ 40^{1} แต่หากผลเป็น ลบจะมีค่า negative predictive value (NPV) สูงมากกว่าร้อยละ 95^{2} จึงอาจ กล่าวได้ว่า SPT ที่ให้ผลลบนั้น สามารถที่จะบอกว่าผู้ป่วยไม่ได้มีการแพ้อาหาร แบบ IgE-mediated ได้เกือบทั้งหมด แต่ไม่สามารถตัดกลุ่มที่เป็น mixed type หรือ non- $\mathrm{IgE}-$ mediated ออกได้ ดังนั้น หากให้ผลบวกเป็นเพียงการบ่งชี้ว่า อาจแพ้อาหาร จึงไม่ควรแนะนำให้ผู้ป่วยงดอาหารโดยอาศัยข้อมูลจากการทำ SPT เพียงอย่างเดียว อย่างไรก็ดี กรณีที่มีประวัติแพ้อาหารรุนแรงแบบ anaphylaxis หาก SPT ให้ผลบวกต่ออาหารนั้น ถึงแม้ว่าค่า PPV น้อยกว่า ร้อยละ 40 ก็ควรพิจารณาวินิจฉัยว่าแพ้อาหาร และแนะนำให้เลี่ยงอาหาร ชนิดนั้นในเด็กเล็กผิวหนังมีการตอบสนองต่อการทำ SPT ได้น้อยกว่าปกติ ดังนั้นในเด็กอายุน้อยกว่า 1 ปี อาจให้ผลลบลวงได้ ทั้งที่ผู้ป่วยมีภาวะแพ้ อาหารแบบ $\mathrm{IgE}-$ mediated การทดสอบทางผิวหนังนี้ ต้องทำโดยผู้ที่ มี ประสบการณ์ จึงแนะนำให้ทำโดยแพทย์ผู้เชี่ยวชาญทางภูมิแพ้

1.2 การตรวจ IgE ที่จำเพาะต่ออาหาร (food-specific IgE)

การตรวจ IgE ที่จำเพาะต่ออาหาร เป็นการตรวจเลือดของผู้ป่วยเพื่อหา IgE ที่จำเพาะ ต่ออาหาร จึงใช้ในกรณีสงสัยแพ้อาหารแบบ $\operatorname{IgE}-$ mediated วิธีนี้ มีความไวน้อยกว่า การทำ SPT ราคาแพงกว่าและใช้เวลาในการตรวจนานกว่า ส่วนใหญ่มักพิจารณาตรวจวิธีนี้ในกรณีที่ไม่สามารถส่งต่อผู้ป่วยมาทำ SPT หรือ ในกรณีที่ผู้ป่วยไม่สามารถทำ SPT ได้ เช่น ไม่สามารถหยุดยา antihistamine ได้ มีรอยโรคที่ผิวหนังมาก เช่น โรคผิวหนังอักเสบจากภูมิแพ้ หรือ dermographism และในกรณีที่มีประวัติอาการแพ้ที่รุนแรงมาก ${ }^{3}$

หากการตรวจให้ผลบวก การแปลผลเหมือนการทำ SPT คือ ผู้ป่วยมีภาวะ sensitization แต่ไม่ได้บ่งบอกว่าผู้ป่วยแพ้อาหารชนิดนั้นจริง ระดับของ lgE ที่จำเพาะต่ออาหารแต่ละชนิดที่มีค่าสูงมากขึ้น มักสัมพันธ์กับโอกาสที่ผู้ป่วย แสดงอาการแพ้อาหารที่สูงขึ้น แต่มักไม่สัมพันธ์กับความรุนแรงของอาการ แพ้อาหาร ${ }^{4}$ นอกจากนี้ ยังสามารถตรวจระดับ IgE ที่จำเพาะต่ออาหารเป็น ระยะเพื่อช่วยทำนายโอกาสที่ผู้ป่วยจะหายจากโรคหรือเกิดภาวะ tolerance กล่าวคือ หากระดับ IgE ที่จำเพาะต่ออาหารลดลง มักสัมพันธ์กับโอกาสหาย จากโรคที่สูงขึ้น ${ }^{5}$ ในปัจจุบันมีการศึกษาที่พยายามหาระดับของ IgE ที่จำเพาะ ต่ออาหารที่ให้ค่า PPV สูง ${ }^{6-9}$ เพื่อลดความเสี่ยงและค่าใช้จ่ายที่จะต้องทำ oral food challenge ระดับของ IgE ที่จำเพาะต่ออาหารแต่ละชนิดและความถูกต้อง ในการทำนายการเกิดอาการเมื่อทำ oral food challenge ดังแสดง ในตารางที่ 1.2.1 ในทางตรงกันข้าม การตรวจไม่พบระดับ IgE ที่จำเพาะต่ออาหารนั้น สามารถพบในผู้ป่วยที่แสดงอาการแพ้อาหารได้ร้อยละ $10-25^{4}$

ตารางที่ 1.2 .1 ระดับของ IgE ที่จำเพาะต่ออาหารแต่ละชนิด และความถูกต้อง ในการทำนายการเกิดอาการเมื่อทำ oral food challenge (ดัดแปลงจากเอกสารอ้างอิงหมายเลข 6)

อาหาร	ระดับ IgE ที่จำเพาะต่ออาหาร $(\mathbf{k U} / \mathbf{L})$	Positive predictive value $(\mathbf{P P V})$
ไข่		
อายุ > 2 ปี	7	98
อายุ < 2 ปี	2	95
นมวัว	15	95
อายุ > 1 ปี	5	95
อายุ < 1 ปี	14	95
ถั่วลิสง	20	100
ปลา	30	73
ถั่วเหลือง	26	74
แป้งสาลี	~ 15	~ 95
Tree nut		

1.3 การทดสอบการแพ้นมวัวโดยการรับประทาน (oral food challenge

 test/oral provocation test)ในกรณีที่คนไข้อาการดีขึ้นหลังจากการงดอาหารที่มีโปรตีนนมวัวเพื่อ เป็นการทำ diagnostic elimination of diet แล้ว ต่อมาควรมีการทำ oral food challenge (OFC) หรือ oral provocation test ด้วยโปรตีนนมวัวเพื่อเป็นการ ยืนยันการวินิจฉัยโรค เนื่องจากในบางกลุ่มอาการเช่น atopic dermatitis และ respiratory symptoms อาการอาจดีขึ้น ได้จากปัจจัยภายนอกอื่นที่ไม่เกี่ยวข้อง กับการแพ้อาหาร ${ }^{10}$ การทดสอบการแพ้โปรตีนนมวัวโดยการรับประทาน (oral food challenge test/oral provocation test) เป็นวิธีการในการยืนยันการ วินิจฉัยโรคแพ้โปรตีนนมวัว มีความหลากหลายของ protocol ${ }^{11}$ ทั้งนี้สามารถ ปรับตามความเหมาะสมขึ้นกับอาการ อาการแสดงของผู้ป่วย และดุลพินิจ ของแพทย์ผู้ทำการรักษา

การทำ oral food challenge test แบ่งออกเป็น 3 แบบ ดังนี้ 11,12

1. Opened challenge
2. Single-blind challenge
3. Double-blind, placebo-controlled food challenge (DBPCFC)

การเตรียมตัวก่อนการทำ oral food challenge test

- ผู้ป่วยสบายดี ไม่มีอาการเจ็บป่วยหรือมีไข้ ไม่มีอาการจับหืดเฉียบพลัน ในช่วง 1 สัปดาห์ที่ผ่านมา
-งดรับประทานอาหารที่สงสัย (นมวัว) อย่างน้อย 2 สัปดาห์ก่อนวันที่ทำการ ทดสอบ ${ }^{13}$
- งดรับประทานยาแก้แพ้แอนตี้ฮีสตามีนและยาขยายหลอดลม ตามค่า ครึ่งชีวิต ของยาแต่ละตัว ${ }^{10,14}$ (ตารางที่ 1.3.1)
- มีการขอความยินยอม (inform consent) อย่างเป็นลายลักษณ์อักษร อธิบาย ถึงวิธีการทำ ประโยชน์และความเสี่ยงในการทดสอบ
- กรณีที่ผู้ป่วยให้ความร่วมมือได้ดี และมีอาการแพ้ในระดับที่รุนแรงน้อย ถึงปานกลาง อาจพิจารณาทำการทดสอบที่แผนกผู้ป่วยนอกได้ (out-patient setting)
- ในบางกรณีอาจพิจารณาทำการทดสอบในหอผู้ป่วยของโรงพยาบาล ${ }^{11}$, 15,16 หรือในแผนกผู้ป่วยนอก หรือห้องฉุกเฉินที่มีบุคลากรทางการแพทย์ สังเกตอาการใกล้ชิด มียาช่วยชีวิต เช่น adrenaline และอุปกรณ์ช่วยชีวิต เตรียมพร้อมขณะที่ทำการทดสอบ ${ }^{17}$ ได้แก่

1) อาการแพ้อย่างรุนแรง (anaphylaxis)
2) กลุ่มอาการ food protein induced enterocolitis (FPIES)

- พิจารณาเปิดเส้นเลือดดำ (intravenous access) ก่อนทำการทดสอบในกรณี ดังต่อไปนี้

1) อาการแพ้อย่างรุนแรง (anaphylaxis)
2) กลุ่มอาการ food protein induced enterocolitis (FPIES)
3) มีประวัติจับหืดอย่างรุนแรง
4) ผู้ป่วยที่มีความลำบากในการเปิดเส้นเลือดดำ
5) กรณีที่อาจมียาที่ต้องให้ทางหลอดเลือดดำ ในกรณีฉุกเฉิน
*กรณีที่อาจพิจารณาละเว้นการทดสอบการแพ้นมวัวโดยการรับประทาน ได้แก่
6) ผู้ป่วยที่มีประวัติแพ้อย่างรุนแรง (anaphylaxis) หลังรับประทานนมวัว นานไม่เกิน 2 ชั่วโมง รวมทั้งผู้ที่มีผลการตรวจ skin prick test ต่อ cow milk protein
7) ผู้ป่วยที่มีระดับ cow milk specific $\operatorname{IgE}>5 \mathrm{kUA} / \mathrm{L}$ (อายุ <2 ปี) และ $>15 \mathrm{kUA} / \mathrm{L}$ (อายุ > 2 ปี)
*กรณีที่แนะนำให้ส่งต่อกุมารแพทย์ผู้เชี่ยวชาญเฉพาะทางเพื่อทำ oral food challenge test ได้แก่
8) ประวัติอาการแพ้แบบ $\operatorname{IgE}-$ mediated รวมทั้งอาการแพ้อย่างรุนแรง (anaphylaxis)
9) ประวัติเข้าได้กับกลุ่มอาการ FPIES, eosinophilic gastrointestinal disorders และ Heiner syndrome
10) ผู้ป่วยมีประวัติจับหืดอย่างรุนแรง
11) ผู้ป่วยที่มีความลำบากในการเปิดเส้นเลือดดำ

ตารางที่ 1.3.1 ข้อแนะนำในการหยุดยาที่อาจมีผลต่อการแปลผลการทดสอบ oral food challenge (OFC) test

Antihistamine eye drops
Inhaled/intranasal corticosteroids
Topical steroids
Topical immunosuppressive preparations: pimecrolimus, tacrolimus

ตารางที่ 1.3.2 ค่าโดยประมาณของปริมาณโปรตีนในนมวัว

ชนิดของอาหารที่ใช้ทดสอบ	ปริมาณโปรตีนในอาหาร
Milk, skim	8.4 กรัม ต่อนม 8 ออนซ์
Milk, whole	8.0 กรัม ต่อนม 8 ออนซ์
Milk, nonfat, dry	3.6 กรัม ต่อนมผง 10 กรัม

คำแนะนำในการทำ oral food challenge test

- ปริมาณนมวัวทั้งหมดที่ทำการทดสอบเท่ากับ 100 มล. หรือตาม fullserving dose ในกรณีเป็นเด็กโต ${ }^{10,14,16}$ (ตารางที่ 1.3.2)
- ระยะเวลาระหว่างแต่ละ dose $($ interval $)=10-15$ นาที ${ }^{10,16}$ หรืออาจ นานกว่านี้ ในกรณีที่อาการของคนไข้เป็นแบบ delayed reactions
- ในกรณีที่เคยมีอาการแพ้แบบรุนแรงมาก่อน พิจารณาเพิ่ม interval เป็น $30-40$ นาที และลดปริมาณนมวัวที่รับประทาน dose ที่ 1 เป็น $0.1 \%{ }^{10}$ หรืออาจเริ่มต้นด้วยการหยดนมวัว $1-2$ หยดที่บริเวณริมฝีปากล่างและสังเกต อาการ $1-2$ นาที เป็นอันดับแรก ถ้าไม่มีอาการแพ้จงงค่อยดำเนินการทดสอบ ต่อไป 10,17 และพิจารณาสังเกตอาการต่ออย่างน้อย $2-4$ ชั่วโมงหลังจาก รับประทานครบ dose สุดท้าย ${ }^{10}$
- พิจารณาสังเกตอาการนานขึ้นหรือให้ dose นั้นๆ ซ้ำ (repeated dose) ใน กรณีที่ไม่แน่ใจว่ารับประทานแล้วมีอาการแพ้หรือไม่ ${ }^{10}$
- วันถัดมา พิจารณาให้รับประทานแบบ full-serving dose ตามอายุของ คนไข้ 10
- กรณีมีอาการแพ้ในกลุ่มอาการ FPIES อาจพิจารณาใช้ protocol ในการ ทดสอบที่แตกต่างออกไป ดังนี้ (ตารางที่ 1.3.3)
- ยาที่ต้องเตรียมสำหรับแก้ไขในภาวะฉุกเฉิน ดังแสดงในตารางที่ 1.3.4

ตารางที่ 1.3.3 ตัวอย่าง protocol ในการทำ oral food challenge test ในกลุ่มอาการ FPIES

1. ชั่งน้ำหนักปัจจุบันของผู้่ไ่วย
2. คำนวณปริมาณโปรตีนในนมวัว โดยทั่วไปแนะนำให้ใช้ขนาด $0.15-0.3$ กรัม ของโปรตีนนมวัวต่อน้ำหนักตัว (กก.) อาจเริ่มต้นด้วยขนาด 0.06 กรัม ใน กรณีที่เคยมีประวัติมีอาการแพ้อย่างรุนแรง ขนาดสูงสุดของปริมาณทั้งหมด (total amount) ไม่เกิน 3 กรัมของโปรตีนนมวัว หรือ 10 กรัม ของอาหาร
3. ผสมรวมกับ vehicle เพื่อให้ได้ปริมาณ 100 มล.
4. ให้ทั้งหมด 3 ครั้งห่างกัน $30-45$ นาที

ตัวอย่างเช่น ผู้ป่วยน้ำหนัก 10 กก. คำนวณปริมาณนมวัวที่ใช้ในการ ทดสอบ ทั้งหมด 0.15 กรัม $\mathrm{x} 10=1.5$ กรัม (42 มล.ของ skim milk) เนื่องจากนม skim milk 8 ออนซ์ $=240$ มล. มีโปรตีนนมวัว 8.4 กรัม หลังจากนั้นผสมใน vehicle จนได้ปริมาณทั้งหมด 100 มล.

Oral Food Challenge Data Collection Form

ว ${ }^{1}$ ํ.
 วันที่ทำการทดสอบ

ชื่อ-นามสกุล อายุ \qquad เลขที่คนไข้ -_-_-_-_-_ ชนิดของนมวัว และปริมาณทั้งหมด (total amount) ที่ทดสอบ \qquad ชนิดของยากำลังที่รับประทาน รวมทั้งยามื้อสุดท้ายที่รับประทาน
น้ำหนักตัว \qquad กก. โรคประจำตัวของคนไข้
BP................ HR................., RR.................. เวลาเริ่มต้น..

Time given (\min)	Time	$\%$ of total amount	Signs \& symptoms
0		5	
15	10		
30		15	
45		20	
60		25	
75		25	

Total dose ingested $\%$ \qquad Discharged home at time \qquad

การแปลผล \square passed (negative reaction) \square failed (positive reaction)

Plan: \qquad
\qquad วัน/ เวลา

ตารางที่ 1.3.4 ยาที่ต้องเตรียมสำหรับแก้ไขในภาวะฉุกเฉิน

ชนิดยา	ขนาด	ขนาดที่ใช้ ในผู้ป่วย	วิธีให้ยา
Epinephrine	$0.01 \mathrm{ml} / \mathrm{kg} 1: 1000$ aqueous sol, $\max 0.5 \mathrm{ml}$		IM
Diphenhydramine	$1.0-1.5 \mathrm{mg} / \mathrm{kg}, \max 50 \mathrm{mg}$		Oral/IM/IV
Methylprednisolone	$1-2 \mathrm{mg} / \mathrm{kg}, \max 60 \mathrm{mg}$		IM/IV
Ranitidine	$0.5 \mathrm{mg} / \mathrm{kg}, \max 50 \mathrm{mg}$	IV	
Normal saline	$10-15 \mathrm{ml} / \mathrm{kg}$ bolus, $\max 1000 \mathrm{ml} /$ bolus	IV	
Salbutamol	2.5 mg in 3 ml normal saline	Nebulized	

1.4 การตรวจพิเศษอื่น ๆ ที่อาจจำเป็นต้องทำเพื่อการวินิจฉัยจำเพาะโรค

ได้แก่การส่องกล้องตรวจทางเดินอาหาร (GI endoscopy) และการตรวจ พยาธิสภาพของเนื้อเยื่อ ดังนี้

1. Upper endoscopy ช่วยในการวินิจฉัยโรคและพยาธิสภาพที่ทางเดินอาหาร ส่วนบน เช่น eosinophilic esophagitis (EE), enteropathy และ eosinophilic gastroenteritis เป็นต้น
2. Proctoscopy, sigmoidoscopy/colonoscopy (lower endoscopy) ช่วยใน การวินิจฉัยโรคและพยาธิสภาพที่ rectum และลำไส้ใหญ่ เช่น food proteininduced proctocolitis เป็นต้น

เอกสารอ้างอิง

1. Bock SA, Buckley J, Holst A, May CD. Proper use of skin tests with food extracts in diagnosis of hypersensitivity to food in children. Clin Allergy 1977;7:375-83.
2. Sampson HA. Comparative study of commercial food antigen extracts for the diagnosis of food hypersensitivity. J Allergy Clin Immunol 1988;82: 718-26.
3. Bernstein IL, Li JT, Bernstein DI, Hamilton R, Spector SL, Tan R, et al. Allergy diagnostic testing: an updated practice parameter. Ann Allergy Asthma Immunol 2008;100:S1-148.
4. Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol 2010;125(2 Suppl 2):S116-25.
5. Shek LP, Soderstrom L, Ahlstedt S, Beyer K, Sampson HA. Determination of food specific IgE levels over time can predict the development of tolerance in cow's milk and hen's egg allergy. J Allergy Clin Immunol 2004;114: 387-91. Sampson HA. Food allergy--accurately identifying clinical reactivity.
6. Allergy 2005;60(Suppl 79):19-24.

Boyano Martinez T, Garcia-Ara C, Diaz-Pena JM, Munoz FM, Garcia
7. Sanchez G, Esteban MM. Validity of specific IgE antibodies in children with egg allergy. Clin Exp Allergy 2001;31:1464-9.
Garcia-Ara C, Boyano-Martinez T, Diaz-Pena JM, Martin-Munoz F,
8. Reche-Frutos M, Martin-Esteban M. Specific IgE levels in the diagnosis of immediate hypersensitivity to cows' milk protein in the infant. J Allergy Clin Immunol 2001;107:185-90.
9. Clark AT, Ewan PW. Interpretation of tests for nut allergy in one thousand patients, in relation to allergy or tolerance. Clin Exp Allergy 2003;33: 1041-5.
10. Nelson HS. Immunotherapy for inhalant allergens. In: Adkinson NF, Bochner BS, Busse WW, Holgate ST, Lemanske RF, Simons FE. Middleton's Allergy Principles and Practice. vol 2. 7th ed. Philadelphia, Pa: Elsevier; 2009. p. 1672-3.
11. Fiocchi A, Brozek J, Schunemann H, Bahna SL, von Berg A, Beyer K, et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines. Pediatr Allergy Immunol 2010;21 (Suppl 21):1-125.
12. Nowak-Wegrzyn A, Sampson HA. Adverse reactions to foods. Med Clin North Am 2006;90:97-127.
13. American College of Allergy, Asthma, \& Immunology. Food allergy: a practice parameter. Ann Allergy Asthma Immunol 2006;96(3 Suppl 2):S1-S68.
14. Allen KJ, Davidson GP, Day AS, Hill DJ, Kemp AS, Peake JE, et al. Management of cow's milk protein allergy in infants and young children: an expert panel perspective. J Paediatr Child Health 2009;45:481-6.
15. Ngamphaiboon J, Chatchatee P, Thongkaew T. Cow's milk allergy in Thai children. Asian Pac J Allergy Immunol 2008;26:199-204.
16. Du Toit G, Meyer R, Shah N, Heine RG, Thomson MA, Lack G, et al. Identifying and managing cow's milk protein allergy. Arch Dis Child Educ Pract Ed 2010;95:134-44.
17. Moissidis I, Chaidaroon D, Vichyanond P, Bahna SL. Milk-induced pulmonary disease in infants (Heiner syndrome). Pediatr Allergy Immunol 2005;16:545-52.
18. Nowak-Wegrzyn A, Assa'ad AH, Bahna SL, Bock SA, Sicherer SH, Teuber SS. Work Group report: oral food challenge testing. J Allergy Clin Immunol 2009;123(6 Suppl):S365-83.

ภาคผนวกที่ 2 ผลิตภัณฑ์ที่ควรหลีกเลี่ยงในผู้ที่แพ้โปรตีนนมวัว และผลิตภัณฑ์ที่ใช้ทดแทนนมวัว

อาหารหลากหลายรูปแบบมี นมวัวหรือผลิตภัณท์จากนมวัวเป็น ส่วนประกอบ ทั้งในการถนอมอาหาร เช่น อาหารปรุงสำเร็จในกระป๋องเป็นต้น หรือในการแปลงรูป ปรุงแต่งรส เช่น ผงปรุงแต่งเลียนแบบธรรมชาติ (natural flavoring) เป็นต้น ดังนั้น จึงควรหลีกเลี่ยงการรับประทานอาหาร ดังกล่าว ถ้าพบข้อความบนฉลากอาหารที่ระบุว่ามีนมวัวหรือผลิตภัณฑ์จากนมวัว เป็นส่วนประกอบ อาหารที่มีนมวัวหรือผลิตภัณท์จากนมวัวเป็นส่วนประกอบ ดังแสดงในตารางที่ 2.1

ตัวอย่างของอาหารและผลิตภัณฑ์ในท้องตลาดที่ประกอบด้วยนมวัว หรือผลิตภัณท์จากนมวัว และอาหารที่ใช้ทดแทนกลุ่มต่าง ๆ ซึ่งเด็กที่เป็นโรค แพ้โปรตีนนมวัวสามารถรับประทานได้ดังแสดงในตารางที่ 2.2

นอกจากนี้ ผลิตภัณฑ์เสริมอาหาร เช่น แคลเซียม เป็นต้น อาจมีการ ปนเปื้อนนมวัวและเคซีเนตได้ จึงควรหลีกเลี่ยงผลิตภัณฑ์ที่มีการปนเปื้อน ดังกล่าว

ตารางที่ 2.1 อาหารที่มีนมวัวหรือผลิตภัณฑ์จากนมวัวเป็นส่วนประกอบ

- นมวัว นมผง (ไขมันเต็มส่วนและขาดมันเนย)
- ไขมันจากนมวัว (butter milk)
- เนย ไขมันเนย (butter fat, butter oil, butter solids)
- นมข้นจืดและนมข้นหวาน
- เนยแข็งทุกชนิด (cheese, cheese powder, paneer)
- ครีมและครีมปรุงแต่ง (artificial cream) เช่น วิปครีม (whipping cream)
- เครื่องดื่มและไอศกรีมผสมนม
- น้ำมันเนย (ghee)
- Fermented milk เช่น นมเปรี้ยว (drinking yoghurt), โยเกิร์ต (yoghurt) และ kefir
- เนยขาว (shortening)
- อาหารที่มีส่วนประกอบของโปรตีนเวย์ (whey powder และ hydrolyzed whey protein) หรือโปรตีนเคซีน (casein)
- Hydrolyzed whey sugar (น้ำตาลเวย์ไฮโดรไลส์)
(อาจอยู่ในขั้นตอนการทำไวน์)
- สารประกอบเคซีเนต (caseinate) ของแร่ธาตุต่าง ๆ เช่น แคลเซียมเคซีเนต (calcium caseinate), iron caseinate, zinc caseinate, น้ำตาลแลคโทส (lactose) และ แลคทูโลส (lactulose)

ตารางที่ 2.2 ตัวอย่างอาหารและผลิตภัณท์ไนท้องตลาดที่ประกอบด้วย นมวัวหรือผลิตภัณฑ์จากนมวัวและอาหารที่ใช้ทดแทนในกลุ่มอาหารต่าง ๆ ซึ่งเด็กและผู้ที่เป็นโรคแพ้โปรตีนนมวัวสามารถรับประทานได้

1. กลุ่มไขมัน	
อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
ไขมันจากมมวัว เนย ไขมันเนย เนยขาว เนยแข็งทุกชนิด (cheese, cheese powder, paneer) น้ำมันเนย (ghee) เนยเทียม (margarine) เนยถั่ว (peanut butter)	น้ำมันหมู น้ำมันพีชชนิดต่าง ? เนยเทียมชนิดที่ไมีมีส่วนผสม ของนมวัว
2. กลุ่มเนื้อสัตว์	
อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
ไส้กรอก แฮมเบอร์เกอร์ ขนมปังที่ผ่าออกและใส่ไส้กรอกตรงกลาง	เนื้อสด (fresh meat) เนื้อสัตว์อื่น ๆ เช่น ปลา ไก่ อาหารทะเล
(hot dog) กกชิ้นเนื้อ เนี้อหมักทอด (rissole)	น้ำเกรร่หรือน้ำสตูที่ไม่ได้ใช้นม เป็นสส่วนผสม ไข่ที่ไม่ได้ใช้เนยหรือเนยแเ็ง
พายเนื้อ เนื้อกระป๋อง ไข่ที่ทอดให้สุกด้วยเนยหรือไส่ไส้ด้วย เนยแเข็ง เช่น ไข่เจียว (omelette)	ในการปรุง

3. กลุ่มผักและผลไม้	
อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
มันฝรั่งบดปรุงสำเร็จ สลัดมันฝรั่ง ผักอบซอสปรุงสำเร็จ สลัดกะหล่ำปลีหั่นฝอยใส่มายองเนส (coleslaw)	ผักและผลไม้สดหรืออบแห้ง ถั่วอบเกลือ ผลไม้กระป๋องในน้ำเชื่อม
4. ธัญพืช (cereal) และอาหารที่ทำจากธัญพืช	
อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
ธัญพืชผสมโกโก้ ธัญพืชผสมซ็อกโกแลต ธัญพืชแท่ง (cereal bar) ผสมโกโก้ ธัญพืชแท่งผสมช็อกโกแลต	แผ่นข้าวโพดเล็ก ๆ อบแห้ง (corn flake) แผ่นข้าวเล็กๆ อบแห้ง (rice flake)
5. อาหารประเภทเส้น ขนมปัง และแป้ง	
อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
เส้นพาสต้า(pasta) ชนิดต่าง ๆ ได้แก่ สปาเกตตี (spaghetti), ลิงกวีเน (linguine), เฟตตูชินี่ (fettuccine), ฟูซีลี (fusilli), เปนเน(penne), รีกาโตนี (rigatoni) และ ราวีโอลี (ravioli) ในซอสหรือชีส บรรจุกระป๋อง เช่น สปาเกตตีไก่ครีมซอสเห็ด ขนมปังนม ขนมปังกรอบ เช่น ขนมปังกรอบรสมะพร้าว ขนมปังกระเทียม	แป้งข้าวเจ้า เช่น เส้นหมี่ขาว แป้งข้าวโพด เส้นพาสต้าสำเร็จรูปที่ไม่มี ส่วนประกอบของเนยแข็ง ขนมปังขาวซึ่งไม่มีส่วนผสม ของนม คุกกี้และเค้กซึ่งไม่มีส่วนผสม ของนมวัว

6. ผลิตภัณฑ์ขนม

อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
ลูกอม มันฝรั่งทอดกรอบรสซาวครีมและหัวหอม มันฝรั่งทอดกรอบแผ่นเรียบรสซาวครีม และหัวหอม มันฝรั่งทอดกรอบรสชีสน้ำพริกเผา มันฝรั่งทอดกรอบรสหมึกย่าง และรสน้ำจิ้มซีฟู้ด ขนมมาร์ชเมลโลสอดไส้ช็อคโกแล็ต ขนมธัญญาหารอบกรอบ รสต้นตำรับ ข้าวหอมญี่ปุ่นอบกรอบ รสคอร์นชีส แครกเกอร์สอดไส้ครีม 2 ชั้นกลิ่น ครีมมี่บัตเตอร์ ข้าวโพดคลุกน้ำตาลและเนย ขนมทอดกรอบเคลือบเนยคาราเมล รสปังเนยกรอบ คาราเมล ลูกอมรสนม ลูกอมเคี้ยวหนึบรสนม ช็อกโกแลตทุกประเภท เช่น ลูกอมช็อกโกแลตนมเคลือบน้ำตาลสีต่าง ๆ ซีเควียช็อกโกมิลค์ ช็อกโกแลต นูกัทถั่วลิสงเคลือบช็อกโกแลตรสนม	,

6. ผลิตภัณฑ์ขนม	
อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
ถั่วลิสงคาราเมลและนูกัต เคลือบช็อกโกแลตนม เวเฟอร์ เช่น เวเฟอร์มังคุด เวเฟอร์ไส้ครีมรสนม เวเฟอร์รสซ็อกโกแลต เป็นต้น ถั่วเคลือบนมหรือช็อกโกแลต ครีมถั่วฮาเซลนัทผสมโกโก้ ใช้ทาขนมปัง	
7. ซุปและเครื่องปรุง	
อาหารที่ควรหลีกเลี่ยง	- อาหารที่ใช้ทดแทน
ซุปกระป๋องต่าง ๆ เช่น ซุปข้าวโพด ซุปข้าวโพดกึ่งสำเร็จรูป ซุปเห็ด ซุปกุ้งมังกรลอบสเตอร์ บิสค์ ซุปครีมมันฝรั่งเข้มข้น สลัดครีมและมายองเนส เกล็ดขนมปังชุบทอด ซอสทำอาหารสำเร็จรูป เช่น ซอสปรุงอาหาร ซอสผงสำหรับทำน้ำเกรวี่รสไก่ ผงแกงกึ่งสำเร็จรูปต้มยำ	ซอสทำเองที่ไม่ใช้นมวัวหรือ วัตถุดิบอื่นทดแทน ผงฟู ครีมออฟทาร์ทาร์ ยีสต์ เครื่องเทศ ถั่วอบซอส ถั่วขาวในซอสมะเขือเทศ ถั่วพินโต้รสเผ็ด ถั่วและเนื้อหมูในซอสมะเขือเทศ

8. เครื่องดื่ม	
อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
เครื่องดื่มรสโกโก้ปรุงสำเร็จ ชนิดผง น้ำนมถั่วเหลืองที่ผสมนมวัว ชานมปรุงสำเร็จชนิดผง ชานม ครีมเทียม ครีมเทียมข้นหวาน	น้ำผลไม้ เครื่องดื่มที่ใช้สารอื่นทดแทนนมวัว ธัญญาหารปรุงสำเร็จผสมข้าวกล้อง ครีมเทียมที่ไม่มีนม
9. อาหารเสริมสำหรับทารกและเด็กเล็ก	
อาหารที่ควรหลีกเลี่ยง	อาหารที่ใช้ทดแทน
อาหารเสริมสูตรต่าง ๆ ซึ่งมีนมวัวผสม เช่น สูตรเริ่มต้น สูตรข้าวกล้องและนม สูตรข้าวโอ๊ตผสมลูกพรุน สูตรข้าวสาลีผสมกล้วยบดและนม สูตรฟักทอง มะเขือเทศ และแครอท สูตรข้าวผสมแอปเปิ้ลและแครนเบอร์รี่ สูตรข้าวบดผสมวิตามิน สูตรผสมปลา สูตรผลไม้รวม สูตรข้าวกล้อง ผสมโยเกิร์ต คอร์นเฟลก และราสพ์เบอร์รี่ สูตรรวมธัญพืชผสมผลไม้ สูตรคัสตาร์ดรสไข่ สูตรข้าวโพดหวานผสมเนื้อไก่	อาหารเสริมซึ่งระบุว่าไม่มี ส่วนผสมของนมวัว เช่น สูตร ข้าวกล้องบดออร์แกนิก สูตร ข้าวกล้องบด ผสมฟักทอง ออร์แกนิก สูตร ข้าวกล้องบด ผสมแครอท ออร์แกนิก สูตร ข้าวกล้องบดผสมกล้วยบด ออร์แกนิก ข้าวตุ๋นผสมฟักทอง ข้าวตุ๋นผสมแครอท ข้าวอบแห้ง

เอกสารอ้างอิง

1. Fleming AM. Go Dairy Free: The Guide and Cookbook for Milk Allergies, Lactose Intolerance, and Casein-Free Living (online article). (cited 2011 Apr 6) Available at:URL:http:// www.godairyfree.org
2. Groce V. Foods to Avoid on a Milk-Free Die (online article). 2008 (cited 2011 Apr 2) Available at:URL:
http://foodallergies.about.com/ od/ livingwithfoodallergies/Living_ with__ Food_Allergies.htm
3. Cow's milk free diet. Dietetic department. The Birmingham children's hospital.
4. Drugs. MIMS Thailand. Available at:URL: http://www.mims.com/Thailand

ภาคผนวกที่ 3 ตัวอย่างแหล่งอาหารของแคลเซียม

ตารางที่ 3.1 อาหารทั่วไปที่มีปริมาณแคลเซียมมากกว่า 200 มก.ต่อปริมาณ อาหาร ที่บริโภค ${ }^{1-4}$

ชนิดอาหาร	ปริมาณอาหารที่บริโภค		ปริมาณ แคลเซียม (มก.)
	ปริมาณ	น้ำหนัก (กรัม)	
นมและผลิตภัณฑ์นม			-
นมสด, รสจืด	1 กล่อง	200 มล.	226
นมสด, รสต่าง ๆ ยกเว้นรสจืด (โดยเฉลี่ย)	1 กล่อง	200 มล.	228
นมสด, พร่องมันเนย	1 กล่อง	200 มล.	246
นมผง	4 ช้อนโต๊ะ	32	207
นมผง, พร่องมันเนย	2 ช้อนโต๊ะ	25	400
นมผง, ขาดมันเนย	3 ช้อนโต๊ะ	30	400
โยเกิร์ต, สูตรนม (รสธรรมชาติ)	1 ถ้วย	150	240
นมเปรี้ยวพร้อมดื่ม, ไขมันต่ำ, รสต่าง ๆ (โดยเฉลี่ย)	1 กล่อง	180 มล.	215
ผลิตภัณฑ์พร้อมดื่มยูเอชที, รสช็อกโกแลต	1 กล่อง	250 มล.	240
ปลา			
ปลาแก้วแห้ง, ทอด	2 ช้อนโต๊ะ	10	292
ปลาขาวแห้ง	2 ช้อนโต๊ะ	10	472
ปลาซิวแห้ง, ทอด	2 ช้อนโต๊ะ	10	426
ปลาซาร์ดีนกระป๋องในน้ำ (รวมเนื้อและกระดูกปลา)	4 ช้อนโตัะ	52	274

ตารางที่ 3.2 อาหารทั่วไปที่มีปริมาณแคลเซียมระหว่าง $100-200$ มก.ต่อ ปริมาณอาหารที่บริโภค ${ }^{1-4}$

ชนิดอาหาร	ปริมาณอาหารที่บริโภค		ปริมาณ แคลเซียม (มก.)
	ปริมาณ	น้ำหนัก (กรัม)	
ผลิตภัณฑ์นม			
โยเกิร์ต, รสต่าง ๆ (โดยเฉลี่ย)	1 ถ้วย	150	160
โยเกิร์ต, ไขมันต่ำ, รสต่าง ๆ (โดยเฉลี่ย)	1 ถ้วย	150	173
เนยแข็ง	1 แผ่น	20	152
นมเปรี้ยวพร้อมดื่ม, รสต่างๆ (โดยเฉลี่ย)	1 กล่อง	180 มล.	106
ปลา			
ปลาลิ้นหมาแห้ง, ทอด	2 ช้อนโต๊ะ	10	191
ปลาซาร์ดีนกระป๋องในซอสมะเขือเทศ (รวมเนื้อและกระดูกปลา)	4 ช้อนโต๊ะ	52	198
ปลาสลาด, ย่าง	2 ช้อนโต๊ะ	20	107
สัตว์น้ำอื่น ๆ			
กุ้งผอย, ดิบ	1 ช้อนโต๊ะ	10	134
กู้งแห้ง	1 ช้อนโต๊ะ	6	138
ผลิตภัณฑ์จากถั่วเหลือง			
เต้าหู้ขาวอ่อน	$1 / 3$ ถ้วยตวง	60	150
เครื่องดื่ม			
เครื่องดื่มรสช็อกโกแลต, ผง	5 ช้อนชา	20	100
ผัก			
ผักโขมใหญ่, ต้ม	$1 / 2$ ถ้วยตวง	52	122

ตารางที่ 3.3 อาหารทั่วไปที่มีปริมาณแคลเซียมน้อยกว่า 100 มก.ต่อปริมาณ อาหารที่บริโภค ${ }^{1-4}$

ชนิดอาหาร	ปริมาณอาหารที่บริโภค		ปริมาณ แคลเซียม (มก.)
	ปริมาณ	น้ำหนัก (กรัม)	
ผลิตภัณฑ์นม			
ไอศกรีมผสมนม	1 ก้อนใหญ่	65	83
ไอศกรีมผสมนม, ไขมันต่า	1 ก้อนใหญ่	65	90
นมอัดเม็ด	10 เม็ด	13	- 63
นมเปรี้ยวที่มีเชื้อจุลินทรีย์		100 มล.	57
ปลา	-		
ปลาไส้ตันแห้ง, ทอด	2 ช้อนโต๊ะ	10	91
ปลาช่อนทะเลแห้ง, ทอด	2 ช้อนโต๊ะ	12	91
ปลากดทะเลแห้ง, ทอด	2 ช้อนโต๊ะ	10	77
ปลาสลิดแห้ง, ทอด	2 ช้อนโต๊ะ	20	70
ปลากระดี่หม้อแห้ง, ทอด	2 ช้อนโต๊ะ	10	50
ปลานิล, ทอด	2 ช้อนโต๊ะ	20	53
ถั่วเมล็ดแห้ง \quad - ${ }^{\text {a }}$			
ถั่วเหลือง, ดิบ	2 ช้อนโต๊ะ	24	82
ผลิตภัณฑ์จากถั่วเหลือง			
เต้าหู้ขาว, หลอด	$1 / 2$ หลอด	95	59
นมถั่วเหลืองสูตรธรรมดา (มีนมผสม)	1 กล่อง	250 มล.	60
ผัก			
ใบกระเพรา, ผัด	3 ช้อนโต๊ะ	27	61
ใบขี้เหล็ก, ต้ม	$1 / 2$ ถ้วยตวง	38	50

ชนิดอาหาร	ปริมาณอาหารที่บริโภค		ปริมาณ แคลเซียม
	ปริมาณ	น้ำหนัก (กรัม)	(มก.)
ผัก	$1 / 2$ ถ้วยตวง	61	69
ใบตั้งโอ๋, ต้ม	$1 / 4$ ถ้วยตวง	17	87
ใบยอ, นึ่ง	$1 / 2$ ถ้วยตวง	64	96
ผักกาดเขียว, ต้ม	$1 / 2$ ถ้วยตวง	54	60
ผักกวางตุ้ง, ต้ม	$1 / 2$ ถ้วยตวง	53	71
ผักคะน้า, ผัด	$1 / 2$ ถ้วยตวง	53	82
ผักปูเล่, ผัด	2 ช้อนโต๊ะ	12	56
สาหร่ายทะเล, ดิบ			
ผลไม้	10 ผล	46	52
มะกอกน้ำ	10 ฝักกลาง	70	99
มะขามหวาน			

เอกสารอ้างอิง

1. Institute of Nutrition, Mahidol University. Thai food composition tables. $1^{\text {st }}$ ed. Bangkok: Paluk Tai; 1999.
2. กระทรวงสาธารณสุข กรมอนามัย กองโภชนาการ. ตารางแสดงคุณค่าทาง โภชนาการของอาหารไทย. กรุงเทพฯ: โรงพิมพ์องค์การทหารผ่านศึก; 2544.
3. อรพินท์ บรรจง, ธรา วิริยะพานิช, อุไรพร จิตต์แจ้ง. คู่มือการประเมิน ปริมาณอาหาร. ฝ่ายโภชนาการชุมชน สถาบันวิจัยโภชนาการ มหาวิทยาลัย มหิดล. กรุงเทพฯ: ฝ่ายการพิมพ์สถาบันพัฒนาการสาธารณสุขอาเซียน มหาวิทยาลัยมหิดล; 2538 .
4. The Nutrient Data Laboratory. USDA nutrient database for standard reference [online]. 2001. Available at:URL:
http://www.nal.usda.gov/fnic/foodcomp. Accessed February 21, 2001.

ภาคผนวกที่ 4 การรักษาโรคแพ้โปรตีนนมวัวในทารกที่เลี้ยงด้วยนมแม่

เนื่องจากนมแม่มีสารอาหารต่าง ๆที่เหมาะสมที่สุดสำหรับทารก และมี ส่วนประกอบอื่น ๆ นอกเหนือจากสารอาหารซึ่งเป็นประโยชน์สำหรับทารก ในช่วงแรกของชีวิต ได้แก่ สารภูมิคุ้มกัน เช่น immunoglobulin โดยเฉพาะ อย่างยิ่ง คือ secretory $\operatorname{IgA}(\mathrm{sIgA})$, neutrophil, lysozyme และ lactoferrin เป็นต้น รวมทั้ง epidermal growth factors และ non-nutritive factors อื่น ๆ ในปริมาณสูงเพื่อช่วยทำให้ระบบเซลล์และเยื่อบุ โดยเฉพาะอย่างยิ่งคือเยื่อบุ ทางเดินอาหารมีความสมบูรณ์เร็วขึ้น ส่วนประกอบที่เป็น non-nutritive factors เหล่านี้ยังไม่สามารถทำเลียนแบบในนมสูตรดัดแปลงสำหรับทารกได้ ดังนั้น ในทารกที่เลี้ยงด้วยนมแม่ ถึงแม้จะมีอาการที่สงสัยโรคแพ้โปรตีนนมวัว ก็ควรแนะนำให้มารดาให้นมแม่ต่อไปและให้แม่งดนมวัว ผลิตภัณฑ์จากนมวัว และอาหารที่มีโปรตีนจากนมวัว เพื่อลดปริมาณแอนติเจนที่ส่งผ่านทางน้ำนม แม่ Sorva และคณะ ${ }^{1}$ ทำการศึกษาระดับ beta-lactoglobulin ในนมแม่ของ ทารกที่แพ้นมวัวจำนวน 55 ราย พบว่า ประมาณ 3 ใน 4 สามารถตรวจพบ beta-lactoglobulin (ELISA, detection limit 0.002 microgram/L) ซึ่งมีระดับสูงขึ้นหลัง oral cow milk load ถึงแม้ว่าในมารดาของทารกที่แพ้ นมวัวเหล่านี้มีจำนวนหนึ่งซึ่งตรวจไม่พบ beta-lactoglobulin ทั้งก่อนและ หลังการทำ oral cow milk load แสดงให้เห็นว่า beta-lactoglobulin อาจไม่ใช่ สาเหตุทั้งหมดของการเกิดโรคแพ้โปรตีนนมวัวในเด็กที่เลี้ยงด้วยนมแม่ เพียงอย่างเดียว นอกจากนี้การที่เด็กได้รับแอนติเจน เหล่านี้ผ่านทางน้ำนมแม่ ในปริมาณน้อย ๆ อาจเป็นการส่งเสริม tolerance ได้อีกทางหนึ่ง

กรณีที่มารดาไม่สามารถงดนมวัว ผลิตภัณฑ์จากนมวัว และอาหารที่มี โปรตีนจากนมวัวได้โดยเด็ดขาด มีการศึกษาในเด็กที่เป็น allergic proctocolitis โดย Lake และคณะ 2,3 ซึ่งวินิจฉัยภาวะนี้โดยการส่องกล้อง และเมื่องดโปรตีน

นมวัว อาการเลือดออกหายไปภายใน $72-96$ ชั่วโมง พบว่าในเด็ก 95 ราย ที่เลี้ยงด้วยนมแม่เพียงอย่างเดียวและมีอาการถ่ายอุจจาระมีเลือดปนใน 3 เดือนแรกของชีวิตนั้น โปรตีนในอาหารมารดาที่ทำให้เกิดอาการมากที่สุด คือ นมวัว $(62 / 95$ ราย) รองลงมาคือไข่ ($18 / 95$ ราย) ข้าวโพต ($6 / 95$ ราย) และถั่เเหลือง ($3 / 95$ ราย) มีเพียง 5 ใน 95 รายที่แพ้โปรตีนมากกว่า 1 ชนิด ในการศึกษานี้มีทารกจำนวน 21 รายชึ่งแพทย์ไม่สามารถระบุโปรตีน ในอาหารแม่ที่ทำให้เกิดการแพ้ได้ หรือมารดาไม่สามารถงดโปรตีนนมวัวได้ โดยเด็ดขาด และยังคงได้รับนมแม่อย่างต่อเนื่อง โดยยังคงมีเลือดออกปนกับ อุจจาระแต่ไม่มีอาการอื่น ๆ ที่รุนแรง ยกเว้น 6 รายที่มีอาการซีดเล็กน้อย เมื่อติดตามถึงอายุ $9-12$ เดือน พบว่าทั้งหมดสามารดรับประทานอาหารปกติ ได้ไดยไม่จำกัด และในเด็กกลุ่มนี้เมื่อติดตามต่อไปจนถึงอายุ 10 ปีไม่มีรายใด ที่มีปัญหา inflammatory bowel disease

มีข้อมูลจากการศึกษาในประเทศตะวันตกพบว่ามากกว่าครึ่งหนึ่งของ ทารกที่มีภาวะถ่ายอุจจาระปนเลือดในช่วงอายุ 3 เดือนแรก เป็นทารกที่ได้รับ นมแม่เพียงอย่างเดียว และกาารักษษาส่วนใหญู่ที่ทารกเหล่านี้ได้รับคือการงด โปรตีนจากนมวัวในอาหารมารดา หรือการให้นมสูตรสำหรับรักษาโรคแพ้ โปรตีนนมวัว ${ }^{4}$ แต่ความชุกที่แท้จริงของโรคแพ้โปรตีนนมวัวในทารกกลุ่มนี้ ยังเป็นที่ถกเถียยกันอยู่ มีการศึกษาแบบ randomized controlled trial ในทารก กลุ่มนี้จำนวน 40 รายโดย Arvola และคณะจากฟินแลนด์5 โดยสุ่มเด็ก กลุ่มหนึ่งให้งดโปรตีนจากนมวัวและอีกกลุ่มหนึ่งให้นมเดิม (นมแม่หรือนม ผสม) ต่อไปเป็นเวลา 1 เดือนและติดตามจนครบ 1 ปีผลการศึกษา พบว่า อาการถ่ายเป็นเลือดของทารกทั้งหมดไม่รุนแรงและหายไปได้เอง การงด โปรตีนนมวัวไม่มีผลต่อระยะเวลาและความรุนแรงของการมีอุจจาระปนเลือด ยกเว้นในรายที่ภายหลังพิสูจน์ได้ว่าเป็นโรคแพ้โปรตีนนมวัวจริง (เพียง ร้อยละ 18 โดย oral food challenge ในการศึกษานี้) และคณะผู้วัย่ยด้

พยายามศึกษาสาเหตุของภาวะนี้พบว่าอาจมีส่วนเกี่ยวข้องกับการติดเชื้อไวรัส บางชนิดและจำนวน bifidobacteria และ lactobacilli ในอุจจาระที่ต่ำกว่าเด็ก ปกตินอกเหนือจากโรคแพ้โปรตีนนมวัว ดังนั้นผู้วิจัยแนะนำให้ rechallenge นมวัว ทุกรายเมื่ออาการถ่ายปนเลือดหายไปเพื่อลดปัญหาการจำกัดโปรตีน นมวัวโดยไม่จำเป็น

ดังนั้นจึงควรแนะนำให้มารดาให้นมแม่ต่อไปโดยมารดางดโปรตีนจาก นมวัว ในกรณีที่มารดาไม่สามารถงดนมวัว ผลิตภัณฑ์จากนมวัว และอาหาร ที่มีโปรตีนจากนมวัวได้ อาจพิจารณาให้นมสูตรส้าหรับรักษาโรคแพ้โปรตีน นมวัว ยกเว้นในกรณีของ allergic proctocolitis ที่อาการไม่รุนแรง อาจ พิจารณาให้นมแม่ต่อไปได้

เอกสารอ้างอิง

1. Sorva R, Makinen-Kiljunen S, Juntunen-Backman K. Betalactoglobulin secretion in human milk varies widely after cow's milk ingestion in mothers of infants with cow's milk allergy. J Allergy Clin Immunol 1994 Apr;93(4):787-92.
2. Lake AM, Whitington PF, Hamilton SR. Dietary protein-induced colitis in breast-fed infants. J Pediatr 1982 Dec;101(6):906-10.
3. Lake AM. Food-induced eosinophilic proctocolitis. J Pediatr Gastroenterol Nutr 2000;30 (Suppl):S58-S60.
4. Xanthakos SA, Schwimmer JB, Melin-Aldana H, Rothenberg ME, Witte DP, Cohen MB. Prevalence and outcome of allergic colitis in healthy infants with rectal bleeding: a prospective cohort study. J Pediatr Gastroenterol Nutr 2005 Jul; 41 (1):16-22.
5. Arvola T, Ruuska T, Keranen J, Hyoty H, Salminen S, Isolauri E. Rectal bleeding in infancy: clinical, allergological, and microbiological examination. Pediatrics 2006 Apr;117(4):e760-e768.

ภาคผนวกที่ 5 ข้อมูลของผลิตภัณฑ์นมที่ใช้ในการรักษาโรคแพ้โปรตีนนมวัว

5.1 Soy protein-based formula

ถั่วเหลืองมีโปรตีนประมาณร้อยละ 40 ของน้ำหนักถั่วเหลืองเมล็ดแห้ง ร่างกายนำโปรตีนจากถั่วเหลืองไปใช้ได้น้อยกว่าและช้ากว่าโปรตีนจากนมวัว ${ }^{1}$ ดังนั้นในการผลิต soy protein-based formula จึงจำเป็นต้องเติมโปรตีน มากกว่านมวัว เพื่อให้ทารกและเด็กเล็กได้รับโปรตีนอย่างเพียงพอ โดย European Society of Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) กำหนดให้ soy protein-based formula มีปริมาณ โปรตีน 2.25-3.0 กรัมต่อ 100 กิโลแคลอรีใน infant formula และ 2.25-4.5 กรัมต่อ 100 กิโลแคลอรีใน follow-on formula ${ }^{2,3}$ และ American Academy of Pediatrics (AAP) กำหนดปริมาณโปรตีน 2.45-2.8 กรัมต่อ 100 กิโลแคลอรีใน infant formula ${ }^{4}$ นอกจากนั้น โปรตีนที่สกัดได้จากถั่วเหลืองจะมีกรดอะมิโนแตกต่าง จากโปรตีนนมวัว โดยมี methionine, lysine และ branched-chain amino acids น้อยกว่าโปรตีนนมวัว โดย เฉพาะ methionine จะมีปริมาณต่ำมาก ดังนั้น การนำโปรตีนจากถั่วเหลืองมาผลิตเป็น soy protein-based formula จึงจำเป็น ต้องเติม methionine เพื่อให้ได้กรดอะมิโนจำเป็นที่ครบถ้วน และต้องมีการ เติมสารอาหารต่างๆ ตามข้อกำหนดของการผลิตนมสำหรับทารกและเด็กเล็ก

ความปลอดภัยในการใช้ soy protein-based formula ในทารกและเด็กเล็ก เนื่องจากโปรตีนใน soy protein-based formula มีความแตกต่างจาก นมแม่และนมวัว จึงมีความกังวลเกี่ยวกับสารอาหารที่ทารกได้รับและการ เจริญเติบโตของทารกที่ได้ร้บ soy protein-based formula

ในปี พ.ศ. 2542 Lasekan และคณะ ${ }^{5}$ ได้ทำการศึกษาแบบ randomized controlled trial เพื่อติดตามภาวะโภชนาการและการเจริญเติบโตของทารก จำนวน 267 คน แบ่งเป็นกลุ่มที่ได้ร้บ soy-protein based formula และกลุ่ม

ทารกที่ได้รับนมแม่และ infant formula โดยติดตามตั้งแต่ช่วงแรกเกิดจนถึง อายุ 1 ปี พบว่าทารกที่ได้รับ soy protein-based formula มีการเพิ่มขึ้นของ น้ำหนักน้อยกว่ากลุ่มที่ได้รับนมแม่และ infant formula ในช่วง 1 เดือนแรก แต่เมื่อติดตามต่อไปในระยะยาวจนถึงอายุ 1 ปี การเจริญเติบโตของทารก ไม่มีความแตกต่างกันทั้งน้ำหนัก ความยาว และเส้นรอบศีรษะ นอกจากนั้น การตรวจระดับ albumin, hemoglobin และ blood urea nitrogen ของทารก อยู่ในเกณฑ์ปกติและไม่มีความแตกต่างอย่างมีนัยสำคัญ

ในปี พ.ศ. 2545 Mendez และคณะ 6 ทำการศึกษาแบบ systematic review โดยรวบรวมข้อมูลจาก 5 การศึกษาที่เปรียบเทียบการเจริญเติบโตของทารก ที่ได้รับ soy protein-based formula กับกลุ่มทารกที่ได้รับ infant formula หรือนมแม่ การศึกษาส่วนใหญ่ศึกษาในทารกอายุน้อยกว่า 1 ปี พบว่า ทารกมี การเจริญเติบโตปกติ และไม่มีความแตกต่างกันระหว่างกลุ่มทารกที่ได้รับ soy protein-based formula กับกลุ่มทารกที่ได้รับ infant formula หรือนมแม่ นอกจากนั้นยังไม่พบความแตกต่างของระดับ serum albumin และ blood urea nitrogen ซึ่งแสดงให้เห็นว่าทารกทั้ง 2 กลุ่มมีเมตาบอลิซึมของโปรตีน ไม่แตกต่างกัน

มีการศึกษาเกี่ยวกับ bone mineralization ของทารกที่ได้รับ soy protein-based formula โดย Mimouni และคณะ ${ }^{7}$ ในปี พ.ศ. 2536 ศึกษา bone mineral content และระดับวิตามินดีในทารกจำนวน 72 คน แบ่งเป็นกลุ่มที่ได้รับ นมแม่ infant formula และ soy protein-based formula หลังจากได้รับนมเป็น เวลา 6 และ 12 เดือน พบว่า bone mineral content และระดับวิตามินดีของ ทารกทั้ง 3 กลุ่มไม่มีความแตกต่างกันอย่างมีนัยสำคัญ

ถั่วเหลืองตามธรรมชาติมีส่วนประกอบของ phytoestrogens หลายษันิด โดยเฉพาะ isoflavones ${ }^{8}$ จึงมีความกังวลในการใช้ soy protein-based formula ในทารกและเด็กเล็ก เนื่องจากมีข้อมูลจากการศึกษาในสัตว์ทดลองว่าสาร
isoflavone อาจมีผลกระทบต่อการพัฒนาระบบสืบพันธุ์ พัฒนาการของ เด็กเล็ก ระบบภูมิคุ้มกัน และการทำงานของต่อมไทรอยด์ อย่างไรก็ตาม ข้อมูลจากการศึกษาในมนุษย์ยังไม่สามารถแสดงถึงผลกระทบเหล่านี้ต่อ ร่างกาย $3,4,9$

การศึกษาของ Strom และคณะ ${ }^{10}$ ในปี พ.ศ. 2544 เกี่ยวกับผลกระทบ ในระยะยาวของการได้รับ soy protein-based formula ตั้งแต่ในช่วงทารก โดยการโทรศัพท์สัมภาษณ์กลุ่บตัวอย่างอายุ $20-34$ ปี ซึ่งเคยเป็นทารกที่เข้า ร่วมโครงการวิจัยแบบ randomized controlled trial ที่ได้รับ soy protein-based formula และ infant formula จ จำนวน 811 คน (248 คนได้ร้บ soy proteinbased formula และ 563 คนได้รับ infant formula) พบว่าไม่มีความแตกต่าง ของน้ำหนัก ส่วนสูง การเข้าสู่ว้ยรุ่น และคววมมผิดปกติของต่อมไทรอยด์ ในทั้ง 2 กลุ่ม ในกลุ่มตัวอย่างเพศหญิงที่ได้ร้บ soy protein-based formula ในขณะ ที่เป็นทารก จะมีระยะเวลาการมีประจำเดือนในแต่ละเดือนมากกว่ากลุ่มที่ ได้รับ infant formula เล็กน้อย (0.37 วัน) แต่ปริมาณประจำเดือนไม่ แตกต่างกัน รวมไปถึงการตั้งครรภ์ และภาวะแทรกซ้อนต่างๆ ของการ ตั้งครรภ์ไม่แตกต่างกัน

มีความกังวลเเกี่ยวกับปริมาณสาร isoflavones ที่ทารกได้รับ ซึ่งอาจรบกวน การทำงานของเซลล่ในระบบภูมิคุ้มกัน และทำให้ทารกที่ได้รับ soy proteinbased formula มี่ภูมิคุ้มกันลดลง ในปี พ.ศ. 2545 Ostrom และคณะ 11,12 ทำการศึกษาเกี่ยวกับระบบภูมิตุ้มกันของทารกที่ได้รับ soy protein-based formula เปรียบเทียบกับกลุ่มทารกที่ได้รับนมแม่และนมวัว โดยทำการศึกษา แบบ randomized controlled trial ในทารกจำนวน 267 คน พบว่า ในทารก ที่ได้รับ soy protein-based formula และในกลุ่มที่ได้รับนมแม่และนมวัว ไม่มี ความแตกต่างของปริมาณเซลล์ในระบบภูมิคุ้มกัน รวมทั้งระดับ immunoglobulin และไม่มีความแตกต่างกันของการตอบสนองต่อวัคชีน โปลิโอ คอตีบ บาดทะยัก และไอกรน

การใช้ soy protein-based formula ในทารกและเด็กเล็ก
soy protein-based formula สามารถนำมาใช้ในทารกและเด็กเล็กที่มีภาวะ ต่าง ๆ ที่ไม่สามารถรับ infant formula ได้ตามปกติ รวมทั้งทารกและเด็กเล็ก ที่มีอาการแพ้นมวัวด้วย

มีการนำ soy protein-based formula มาใช้ในการป้องกัน atopic disease ในทารกที่มีความเสี่ยงต่อ atopic disease สูง เช่น มีประวัติครอบครัวเป็น atopic disease เป็นต้น แต่จากการศึกษาแบบ meta-analysis โดย Osborn และ Sinn^{13} ในปี พ.ศ. 2549 พบว่าจากการศึกษาต่าง ๆ ที่เปรียบเทียบอุบัติการณ์ ของ atopic disease ในกลุ่มทารกที่ใช้ soy protein-based formula เปรียบเทียบ กับกลุ่มทารกที่ได้รับ infant formula พบว่า ไม่มีความแตกต่างของอุบัติการณ์ การเกิดโรคหวัดภูมิแพ้ หอบหืด การเกิดผื่น eczema และอุบัติการณ์การเกิด โรคภูมิแพ้โดยรวม จึงไม่แนะนำให้ใช้ soy protein-based formula ในการ ป้องกันโรคภูมิแพ้ในทารกที่มีความเสี่ยง

สำหรับการใช้ soy protein-based formula ในการรักษาโรคแพ้โปรตีน นมวัวนั้น เนื่องจากในถั่วเหลืองมีโปรตีน β-conglycin และ glycinin ซึ่งเป็น โปรตีนโมเลกุลใหญ่ และสามารถทำให้มีอาการแพ้ได้ ${ }^{14}$ ในปี พ.ศ. 2542 Zeiger และคณะ 15 ทำการศึกษาเพื่อหาความชุกของการแพ้ soy proteinbased formula ในกลุ่มผู้ป่วยที่ได้รับการวินิจฉัยโรคแพ้โปรตีนนมวัวแบบ IgE-mediated อายุระหว่าง $3-41$ เดือนจำนวน 93 คน พบว่ามีความชุกของ การแพ้ soy protein-based formula ร้อยละ 14

การศึกษาในประเทศเกาหลี โดย Ahn และคณะ ${ }^{16}$ ในปี พ.ศ. 2546 พบ ความชุกของ การแพ้ soy protein-based formula ในผู้ป่วย atopic dermatitis อายุระหว่าง $3-141$ เดือน ที่มีผล IgE เป็นบวกต่อนมวัวร้อยละ 18.3 และ พบว่าความชุกจะสูงมากในช่วงอายุ $0-12$ เดือน คือ ร้อยละ 36.8

ในปี พ.ศ. 2545 Klemola และคณะ ${ }^{17}$ ทำการศึกษาแบบ randomized controlled trial ในทารกที่มีอาการแพ้นมวัวในช่วงขวบปีแรกจำนวน 170 คน

แบ่งเป็นกลุ่มที่ได้ร้บ soy protein-based formula และกลุ่มที่ได้รับ extensively hydrolyzed formula พบอาการแพ้ในกลุ่มทารกที่ได้รับ soy protein-based formula มากกว่า extensively hydrolyzed formula อย่างมีนียสำคัญ (ร้อยละ 10 และร้อยละ 2.2 ตามลำดับ) โดยอาการส่วนใหญ่ เป็น immediate type ได้แก่ urticaria และ erythema และพบว่าอาการจะเกิดขึ้นกับผู้ป่วยอายุ น้อยกว่า 6 เดือน มากกว่ากลุ่มผู้ป่วยที่อยุุมากกว่า 6 เดือน
ข้อสรุปเกี่ยวกับการใช้ soy protein-based formula ในทารกของ ESPGHAN ${ }^{3}$ ในปีพ.ศ. 2549 และ AAP^{4} ในปี พ.ศ. 2551 แนะนําให้ใช้ soy protein-based formula ในบางกลุ่มผู้ปว่ยทที่มีข้อบ่งชี้ ได้แก่ galactosemia, hereditary lactase deficiency และในกลุ่มที่เป็นมังสวิรัต soy protein-based formula ไม่สามารถนำมาใช้ในการ้้องกันโรคภูมิแพ้ในทารกที่มีความเสี่ยงได้ ส่วนในทารกที่มีการแพ้โปรตีนนมวัว การใช้ soy protein- based formula ต้องใช้อย่างระมัดระรังงนื่องจากจะมีผู้ป็วยร้อยละ $10-14$ ที่อาจมีอาการแพ้ soy protein-based formula ได้ ไม่แนะนำให้ใช้ soy protein-based formula ในการรักษาทารกที่แพ้โปรตืนนมวัวที่มีอาการรุนแรง หรือมีอาการทางลำไส้ ได้แก่ cow milk protein-induced enteropathy หรือ enterocolitis ตัวอย่างผลิตภัณฑ์นม soy protein-based formula ดังแสดงในตารางที่ 5.1.1

ตารางที่ 5.1.1 ผลิตภัณฑ์นม soy protein-based formula

ผลิตภัณฑ์	Isomil advance ${ }^{\circledR}$	Isomil plus advance ${ }^{\circledR}$	Prosobee ${ }^{\text {® }}$
พลังงาน (กิโลแคลอรี/ออนซ์)	20	20	20
สัดส่วนพลังงาน โปรตีน:คาร์ไบไฮเดรต:ไขมัน	10:41:49	13:47:40	10:40:48
โปรตีน (กรัม $/ 100$ กิโลแคลอรี)	2.7	3.45	2.6
คาร์โบไฮเดรต (กรัม/100 กิโลแคลอรี)	10.4	12	10
ชนิดของคาร์โบไฮเดรต (ร้อยละ) - น้ำตาลซูโครส - Corn syrup		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	- 100
ไขมัน (กรัม 100 กิโลแคลอรี)	5.6	4.6	5.3
ชนิดของไขมัน (ร้อยละ) - น้ำมันถั่วเหลือง - น้ำมันดอกทานตะวัน - น้ำมันมะพร้าว - น้ำมันปาล์ม		$\begin{aligned} & 28 \\ & 42 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 20 \\ & 45 \end{aligned}$
โซเดียม (มก./ 100 กิโลแคลอรี)	47	51	36
โพแทสเซียม (มก. 100 กิโลแคลอรี)	112	145	120
แคลเซียม (มก. 100 กิโลแคลอรี)	105	142.5	95
ฟอสฟอรัส (มก./100กิโลแคลอรี)	75	99	75
เหล็ก (มก./100 กิโลแคลอรี)	1.5	1.8	1.8
Osmolality (มิลลิออสโมล/กก.น้ำ)	240	225	170

5.2 Extensively hydrolyzed formula

Extensively hydrolyzed formula คือสูตรนมที่นับว่าเป็น hypoallergenic formula ซึ่งทาง American Academy of Pediatrics ได้ให้คำจำกัดความว่าเป็น สูตรนมที่เมื่อนำมาใช้กับผู้ป่วยที่มีอาการแพ้นมวัวแล้ว จะไม่ก่อให้เกิดอาการ แพ้ในผู้ป่วยร้อยละ 95 โปรตีนที่ใช้ในนมสูตรนี้จะผ่านขบวนการย่อยโปรตีน จนได้เป็น peptide สายสั้น ๆ น้ำหนักโมเลกุลน้อยกว่า $1,500 \mathrm{kDa}^{18}$

European Union กำหนดคำจำกัดความของ hypoallergenic formula ว่าเป็นผลิตภัณฑ์ที่มีปริมาณโปรตีนที่ก่อให้เกิดอาการแพ้น้อยกว่าร้อยละ 1 ของ nitrogen containing substance สำหรับการแพ้โปรตีนนมวัว โปรตีน ที่ทำให้เกิดอาการแพ้ ที่สำคัญได้แก่ beta-lactoglobulin การย่อยโปรตีนเป็น peptide สายสั้น ๆ จะทำให้ปริมาณ beta-lactoglobulin ในนมลดลง ตารางที่ 5.2.1 แสดงปริมาณ beta-lactoglobulin ใน partially hydrolyzed formula, extensively hydrolyzed formula และนมแม่ ${ }^{19}$

ตารางที่ 5.2.1 ปริมาณ beta-lactoglobulin ในผลิตภัณฑ์นม (ดัดแปลงจากเอกสารอ้างอิงหมายเลข 19)

ชนิดของผลิตภัณฑ์นม	ปริมาณ beta-lactoglobulin (ไมโครกรัม/ลิตร)
Cow milk	$1,320,000-4,000,000$
Partially hydrolyzed formula	$12,400-96,250$
Extensively casein hydrolyzed formula	$0.84-5.0$
Extensively whey hydrolyzed formula	$0.91-207$
Breast milk	$5-150$

ความปลอดภัยในการใช้ extensively hydrolyzed formula ในทารกและเด็กเส็ก

เนื่องจากโปรตีนในผลิตภัณฑ์นมประเภทนี้ เป็นโปรตีนที่ผ่านขบวนการ ย่อยต่างๆ ทำให้มีความกังวลเกี่ยวกับคุณภาพของโปรตีน และความครบต้วน ของกรดอะมิโน ซึ่งอาจส่งผลกระทบต่อการเจริญเติบโตของเด็ก

ในปี พ.ศ. 2546 Hernell และคณะ 20 ได้ศึกษาภาวะโภชนาการของทารก ที่มีสุขภาพดี อายุ 6 สัปดาห์- 6 เดือน จำนวน 55 คน ที่ได้รับนม extensively hydrolyzed formula ทั้งสูตรที่เป็น casein hydrolysate แสะ whey hydrolysate เปรียบเทียบกับกลุ่มทารกที่ได้รับนมแม่และ infant formula โดยศึ กษา เปรียบเทียบแบบแผนของ plasma amino acid ระดับ blood urea nitrogen และ ระดับ trace element ต่าง ๆ พบว่าทารกที่ได้รับ extensively hydrolyzed formula มีระดับ blood urea nitrogen สูงกว่า และมีระดับกรดอะมิโนต่าง ๆ ใน พลาสมาแตกต่างจากทารกที่ได้รับนมแม่ คือ มีระดับ threonine, valine, phenylalanine, leucine, isoleucine, methionine และ tryptophan มากกว่ากลุ่ม ที่ได้รับนมแม่ในขณะที่ระดับ trace element ในแต่ละกลุ่มไม่แตกต่างกัน ทั้งนี้ การศึกษานี้ ไม่ได้ศึกษาถึงผลกระทบของความแตกต่างของ plasma amino acid ต่อการเจริญเติบโตของทารก

การศึกยาโดย Nigeemann และคณะ 21 ในปี พ.ศ. 2551 เปรียบเทียบผล ของการ่ใช้ extensively hydrolyzed formula และ amino acid-based formula ในการรักษาผู้ป่วยโรคแพ้โปรตีนนมวัว อายุน้อยกว่า 12 เดือน จำนวน 66 คน พบว่าไม่มีความแตกต่างกันของการเจริญเติบโตทั้งในด้านความยาว น้ำหนัก และเส้นรอบศีรษะ ลักษณะอุจจาระของทารกทั้ง 2 กลุ่มไม่แตกต่างกัน แต่กลุ่ม ที่ได้รับ extensively hydrolyzed formula จะมีอาการอาเจียนน้อยกว่า

ใน ปี พ.ศ. 2554 Mennella เสละคณะ22 ทำการศึกษาเกี่ยวกับการ เจริญเติบโตของทารกสุขภาพดีอายุระหว่าง $0.5-7.5$ เดือนจำนวน 64 คน โดย

แบ่งเป็นกลุ่มที่ได้รับ extensively hydrolyzed formula และกลุ่มที่ได้รับ infant formula และติดตามการเจริญเติบโตทุกเดือนเป็นระยะเวลา 7 เดือน พบว่า เด็กที่กิน extensively hydrolyzed formula มีน้ำหนักต่อความยาว (weight-forlength Z-score) น้อยกว่ากลุ่มเด็กที่กินนมวัว แต่จากการวิเคราะห์พบว่า ปริมาณนมที่เด็กกลุ่มที่กิน extensively hydrolyzed formula ได้ร้บน้อยกว่ากลุ่มที่กิน นมวัว ทั้งนี้อาจเนื่องจากรสชาติของนมที่ทำให้เด็กยอมรับได้น้อยกว่า

German Infant Nutritional Intervention Study (GINI study) ${ }^{23,24}$ ได้ศึกษาเกี่ยวกับผลกระทบของ extensively hydrolyzed formula ต่อการ เจริญเติบโตของทารก โดยทำการศึกษาแบบ randomized controlled trial ใน ทารกจำนวน 1,840 คนที่มีประวัติครอบครัวเป็นโรคภูมิแพ้ แบ่งเป็นกลุ่มที่ได้รับ partially hydrolyzed formula, extensively whey hydrolyzed formula, extensively casein hydrolyzed formula, cow milk-based formula และนมแม่ ติดตามการเจริญฺเติบโตของทารกกลุ่มนี้จนถึงอายุ 6 ปี และ 10 ปี ไม่พบว่ามี ความแตกต่างของการเจริญเติบโตในเด็กที่ได้รับนมต่าง ๆ กัน

การใช้ extensively hydrolyzed formula ในทารกและเด็กเล็ก
การใช้ extensively hydrolyzed formula ในการป้องกันโรคภูมิแพ้ในทารก ที่มีความเสี่ยง จากการศึกษา meta-analysis ของ Osborn และคณะ ${ }^{25}$ ในปี พ.ศ. 2549 พบว่าการใช้ extensively hydrolyzed formula ในทารกที่มี ความเสี่ยงต่อการเป็นโรคภูมิแพ้ ช่วยลดการเกิดโรคภูมิแพ้ในช่วงทารกได้ ร้อยละ 21 อย่างไรก็ตามไม่มีผลถึงอุบัติการณ์การเกิดโรคภูมิแพ้ในช่วง เด็กเล็ก นอกจากนั้น ยังพบว่าอุบัติการณ์ของการเกิด eczema โรคหอบหืด โรคเยื่อบุจมูกอักเสบภูมิแพ้ และการแพ้อาหารไม่แตกต่างกันในกลุ่มที่ได้รับ extensively hydrolyzed formula และนมวัว

GINI study ในประเทศเยอรมัน พบว่าการใช้ extensively hydrolyzed formula ในการป้องกันโรคภูมิแพ้ของทารกที่มีความเสี่ยงสามารถลดอุบัติการณ์

ของโรคภูมิแพ้ในทารกได้ร้อยละ 49 และลดอุบัติการณ์ของ atopic dermatitis ได้ร้อยละ 58 ในกลุ่มทารกที่ได้รับ extensively casein hydrolyzed formula เปรียบเทียบกับนมวัว แต่ไม่พบความแตกต่าง เมื่อใช้ extensively whey hydrolyzed formula ${ }^{26}$

นอกจากข้อมูลการใช้ extensively hydrolyzed formula ในการป้องกัน โรคภูมิแพ้แล้ว extensively hydrolyzed formula สามารถใช้รักษาโรคแพ้ โปรตีนนมวัวได้อย่างมีประสิทธิภาพ Caffarelli และคณะ 27 ทำการศึกษา เกี่ยวกับการใช้ผลิตภัณท์นมชนิดต่าง ๆ ในการรักษาผู้ป่วยโรคแพ้โปรตีน นมวัว พบว่ามีผู้ป่วยที่มีอาการแพ้เมื่อได้รับ partially hydrolyzed formula 5 รายใน 17 ราย (ประมาณร้อยละ 30) มีอากราเมื่อได้รับ extensively whey hydrolyzed formula 3 รายใน 16 ราย และมีอาการเมื่อได้รับ extensively casein hydrolyzed formula 1 รายใน 16 ราย จึ่งเห็นได้ว่า extensively hydrolyzed formula มีประสิทธิภาพในการรักษาผู้ป่วยแพ้ไปรตีนนมวัวดีกว่า partially hydrolyzed formula แต่ยังมีผู้ว่วยประมาณว้อยละ 10 ที่ไม่สมมารกรับ extensively hydrolyzed formula ไต้

Giampietro และคณะ 28 ทำการศึกษาประสิทธิภาพของการใช้ partially และ extensively whey hydrolyzed formula ในผู้ป่วยโรคแพ้โปรตีนนมวัว จำนวน 32 ราย พบว่าผู้ปวยสสามารถรับ extensively hydrolyzed formula โดย ไม่มีอาการแพ้ไต้ร้อยละ 94-97 ในขณะที่มีผู้ป่วยรร้อยละ 36 ที่มีอาการแพ้ เมื่อได้ร้บ partially hydrolyzed formula

สำหรับการใช้ extensively hydrolyzed formula ในการรักษาโรคแพ้โปรตีน นมวัวนั้น พบว่ามีประสิทธิภาพดี อย่างไรก็ตามยังมีผู้ป่วยจำนวนหนึ่งที่ยังคง แพ้ extensively hydrolyzed formula จำเป็นต้องเปลี่ยนเป็น amino acid-based formula หรือ modular formula

ตัวอย่างผลิตภัณห์นม extensively hydrolyzed formula ดังแสดงในตารางที่ 5.2.2

ตารางที่ 5.2.2 ผลิตภัณฑ์นม extensively hydrolyzed formula

ผลิตภัณฑ์	Nutramigen ${ }^{\text {® }}$	Pregestimi ${ }^{\text {c }}$
พลังงาน (กิโลแคลอรี/ออนซ์)	20	20
สัดส่วนพลังงาน		
โปรตีน:คาร์โบไฮเดรต:ไขมัน	11:44:45	11:41:48
โปรตีน (กรัม/100 กิโลแคลอรี)	2.8	2.8
คาร์โบไฮเดรต (กรัม/100 กิโลแคลอรี)	11	10.2
ชนิดของคาร์โบไฮเดรต (ร้อยละ)		
- Corn syrup	79	37
- Corn starch	21	12.5
- Maltodextrin	-	44
- Dextrose	-	6.5
ไขมัน (กรัม 100 กิโลแคลอรี)	5	5.6
ชนิดของไขมัน (ร้อยละ)		
- น้ำมันถั่วเหลือง	20	25
น้ำมันปาล์ม	45	-
น้ำมันมะพร้าว	20	-
- น้ำมันดอกทานตะวัน	15	-
- น้ำมันข้าวโพด	-	10
- น้ำมันดอกคำฝอยชนิดที่มีโอเลอิกสูง	-	10
- MCT	-	55

ผลิตภัณฑ์	Nutramigen ${ }^{\text {® }}$	Pregestimil®
โซเดียม (มก./100 กิโลแคลอรี)	47	47
โพแทสเซียม (มก./100กิโลแคลอรี)	122	110
แคลเซียม (มก./100 กิโลแคลอรี)	94	115
ฟอสฟอรัส (มก./100 กิโลแคลอรี)	78	75
เหล็ก (มก./100 กิโลแคลอรี)	1.8	1.8
Osmolality (มิลลิออสโมล/กก.น้ำ)	300	320

5.3 Amino acid-based formula

Amino acid-based formula คือสูตรนมที่มีโปรตีนที่ผ่านขบวนการย่อย เป็นกรดอะมิโน นับเป็น hypoallergenic formula ตามคำจำกัดความของ AAP^{18} สามารถนำมาใช้ในการรักษาโรคแพ้โปรตีนนมวัวได้ อย่างไรก็ตาม นมชนิดนี้อาจมีข้อจำกัดในการใช้ เนื่องจากมีราคาสูงและรสชาติที่ทารก รับได้ยาก

แม้ว่า extensively hydrolyzed formula จะมีประสิทธิภาพดีในการรักษาโรค แพ้โปรตีนนมวัวในทารกและเด็กเล็ก แต่ยังพบว่ามีผู้ป่วยประมาณร้อยละ $2-10$ ที่มี อาการแพ้ extensively hydrolyzed formula ${ }^{18,29}$ ซึ่งจำเป็นต้องนำ amino acid-based formula มาใช้ในการรักษา

ในปี พ.ศ. 2544 Sicherer และคณะ ${ }^{30}$ ทำการศึกษาโดยติดตามผู้ป่วยทารก และเด็กเล็กอายุระหว่าง 6 เดือน -17.5 ปี ที่ได้รับการวินิจจัยโรคแพ้โปรตีน นมวัว และแพ้อาหารหลายชนิด (multiple food allergy) และ/หรือ allergic eosinophilic gastroenteritis และได้รับการรักษาด้วย amino acid-based formula เป็นระยะเวลา $7-40$ เดือน พบว่า ในผู้ป่วยกลุ่มนี้มีการเจริญเติบโต อยู่ในเกณฑ์ปกติทั้งน้ำหนัก ความสูง/ความยาว และน้ำหนักต่อความสูง/ ความยาว นอกจากนั้น ยังพบว่าหลังจากให้การรักษาเป็นระยะเวลา 4 เดือน eosinophil ลดลงจากร้อยละ 5.9 เป็นร้อยละ 3.4 ระดับฮีโมโกลบินเพิ่มขึ้นกว่า ระดับก่อนให้การรักษา 0.8 กรัม/ดล. และระดับ serum ferritin เพิ่มขึ้น 10.6 นาโนกรัม/มล.

การศึกษาแบบ systematic review โดย Hill และคณะ ในปี พ.ศ. 2551^{31} ซึ่งรวบรวมการศึกษาแบบ randomized controlled trial 20 การศึกษา เปรียบเทียบการใช้ amino acid-based formula กับ extensively hydrolyzed formula ในการรักษาโรคแพ้โปรตีนนมวัว พบว่า ในกลุ่มผู้ป่วยโรคแพ้โปรตีน นมวัวที่อาการไม่รุนแรง ประสิทธิภาพในการใช้ amino acid- based formula และ extensively hydrolyzed formula ในการรักษาอาการทางผิวหนัง และระบบ

ทางเดินอาหารของผู้ป่วยไม่แตกต่างกัน อย่างไร็็ตาม มีบงการศึกษาพบว่า มีความแตกต่างของการ เจริญเติบโตของผู้ปวย่ในกลุ่มที่ได้รับ amino acid -based formula และ extensively hydrolyzed formula โดยบางการศึกษาพบว่ากลุ่มผู้ป่ยย ที่ได้รับ amino acid-based formula มีควมมยาวหรือน้ำหนักมากกว่า extensively hydrolyzed formula ${ }^{32-34}$ อย่างไร็็ตาม มีการศึกษาที่พบว่าการเจริญเติบโต โดยวัดน้ำหนักตามเกณท์ความสูงในกลุ่มที่ได้รับ extensively hydrolyzed formula มากกว่ากลุ่มที่ได้รับ amino acid-based formula ${ }^{35}$ ยังไม่มีข้อสรุป เกี่ยวกับการเจริญเติบโตของผู้ป่วยที่ได้รับสูตรนมทั้งสองนี้ และยัตต้องการ การศึกษาเพิ่มเติมในอนาคต
สำหรับผู้ป่วยที่มีอาการรุนแรงโดยเฉพาะกุ่มที่อาการของระบบทางเดิน อาหารแบบ non-IgE-mediated ได้แก่ gastroesophageal reflux disease, enterocolitis, proctitis, gastroenteritis syndromes และผู้ป่วยที่มี severe atopic eczema ผู้ป่วยที่ ีีอาการแพ้ โปรตีนนมวัวในขณะที่ได้รับนมแม่ อย่างเดียว (exclusive breastfeeding) พบว่ามีการแพ้ extensively hydrolyzed formula ร่วมด้วย ซึ่งการใช้ amino acid-based formula จะมีประสิทธิภาพ ในการรักษามากกว่า ${ }^{31}$

ตัวอย่างผลิตภัณท์นม amino acid-based formula ดังแสดงในตารางที่ 5.3.1

ตารางที่ 5.3.1 ผลิตภัณฑ์นม amino acid-based formula

ผลิตภัณฑ์	Neocate LCP ${ }^{\text {® }}$	Nutramigen $\mathbf{A A}^{\text {® }}$
พลังงาน (กิโลแคลอรี/ออนซ์)	20	20
สัดส่วนพลังงาน		
โปรตีน:คาร์ไบไฮเดรต:ไขมัน	11:45:44	11:41:48
โปรตีน (กรัม/100 กิโลแคลอรี)	2.7	2.8
คาร์โบไฮเดรต (กรัม / 100 กิโลแคลอรี)	11.3	10.3
ชนิดของคาร์โบไฮเดรต (ร้อยละ) - Corn syrup - Modified starch - Glucose	100	90 10 -
ไขมัน (กรัม 100 กิโลแคลอรี)	4.8	5.3
ชนิดของไขมัน (ร้อยละ) - น้ำมันถั่วเหลือง - น้ำมันมะพร้าว - น้ำมันปาล์ม - น้ำมันดอกคำฝอยชนิดที่มีโอเลอิกสูง - น้ำมันดอกทานตะวัน - น้ำมันคาโนลา	33 - 30 19 18	$\begin{aligned} & 20 \\ & 20 \\ & 45 \\ & 15 \end{aligned}$
โซเดียม (มก. 100 กิโลแคลอรี)	25	47
โพแทสเซียม (มก./100กิโลแคลอรี)	88	110
แคลเซียม (มก./100 กิโลแคลอรี)	98	94
ฟอสฟอรัส (มก./100 กิโลแคลอรี)	71	52
เหล็ก (มก./100 กิโลแคลอรี)	1.5	1.8
Osmolality (มิลลิออสโมล/กก.น้ำ)	360	350

5.4 Modular formula

Modular formula เป็นสูตรอาหารที่สามารถเตรียมขึ้นเองจากส่วนประกอบ

 ภาวะองเู้้วย

 medium-chain triglyceride (MCT) ในสัดส่วนที่เหมาะสม

การศึกษาในประเทศไทยโดยพิภพ จิรภิญโญและคณะ ${ }^{66}$ ทำการศึกษาแบบ randomized controlled trial ในผู้ป่วยจำนวน 38 คน อายุระหว่าง $2-24$ เดือน ที่ได้รับการวินิจฉัยโรคแพ้โปรตีนนมวัว โดยแบ่งเป็นกลุ่มที่ได้ร้บการรักษาโดย soy protein-based formula และกลุ่มที่ได้รับ modular formula โดยใช้โปรตีนจาก เนื้อไก่ หลังจากให้การรักษาเป็นระยะเวลา 14 วัน พบว่ามีผู้ป่วยเกิดอาการแพ้ ร้อยละ 67 ในกลุ่มที่ได้รับ soy protein-based formula และร้อยละ 20 ในกลุ่ม ที่ได้รับ chicken-based formula (odd ratio 8.0)

นอกจากนั้นพิภพ จิรภิญโญและคณะ ${ }^{37}$ ยังได้ทำการศึกษา แบบ randomized controlled trial ในผู้ป่วยจำนวน 58 คน อายุระหว่าง $1-12$ เดือน ที่ได้รับการ วินิจฉัยโรคแพ้โปรตีนนมวัว โดยแบ่งเป็นกลุ่มที่ได้รับการรักษาโดย extensively
hydrolyzed casein formula และกลุ่มที่ได้รับ modular formula โดยใช้โปรตีน จากเนื้อไก่ หลังจากให้การรักษาเป็นระยะเวลา 14 วัน พบว่ามีผู้ป่ายจำนวน 38 คน ในกลุ่มที่ได้รับ extensively hydrolyzed casein formula เกิดอาการแพ้ และ ผู้วขยจำนวน 25 คน ในกลุ่มที่ได้รับ chicken-based formula เกิดอาการแพ้ ($p<0.05$)
Fiocchi และคณะ ${ }^{38}$ ศึกษาการใช้ modular formula โดยใช้โปรตีนจากการ ย่อยข้าว ในการรักษาผู้ป่วยโรคแพ้ไปรตีนนมวัวจำนวน 100 คน พบว่าสัดส่วน ของจำนวนผู้ปปยยีี่มีรดับ IgE ต่อข้าวและข้าวี่ผ่านขบวนการย่อย (hydrolyzed rice) สูงกว่า $0.35 \mathrm{kUA} / \mathrm{L}$ เท่ากับ $21 / 91$ และ $4 / 91$ ตามลำดับ เมื่อทำการทตสอบ อาการแพ้โดยใช้วิธี double-blind, placebo-controlled food challenge ต่อ modular formula ที่ใช้โปรตีนจากการย่อยข้าว พบว่าไม่มีอาการแพ้ไนผู้ป้วย ทั้งหมดที่ได้รับการทดสอบ
Reche และคณะ ${ }^{39}$ ทำการศึกษาการรักษผผู้ป่วยยโรดแพ้โปรดีนนมวัว โดย ใช้ modular formula ที่ใช่ไปรตีนที่ได้จกกการย่อยโปรตีนจากข้าว ในทารกที่ได้รับ การวินิจฉัย่าเป็นโรคแพ้โปรตีนนมวัวแบบ IgE-mediated จำนวน 92 คน แบ่งเป็นกลู่มที่ได้รับ modular formula และกลุ่มที่ได้รับ extensively hydrolyzed formula เมื่อติดตามไปจนผู้ป่วยอายุ 2 ปี พบว่าจำนวนผู้ป้วยที่หายจากการแพ้ โปรตีนนมวัวไม่เตกต่างกัน ในกล่่มผู้ป่วยยที่ยังมีอากรแพ้เมื่ออายุ 2 ปีพบว่า ระดับ IgE ไม่แตกต่างกัน นอถจากนั้นยังพบว่า การเจิญูเติบโตทั้งในด้านน้ำหนัก ความยาว และน้ำหนักต่อความยาวของทารกทั้ง 2 กลุ่ม อยู่ในเกณท์ปกติและไม่มี ความแตกต่งกันอย่างมีนัยสาคัญ

จากการศึกษาเกี่ยวกับการใช้ modular formula ในการรักษาผู้ ปెวยโรคแพ้ โปรตีนนมวัว โดยการนำโปรตีนจากแหล่งอาหารต่าง 7 ที่ไม่ทำให้เกิดอาการแพ้ พบว่าได้ผลการรักษทีี่มีประสิทธิภาพ modular formula จึงนับเป็นทางเลือกหนึ่ง ในการรักษาผู้ปไวยโรคแพ้โปรตีนนมวัวที่ได้ผลลีและราคาไม่สูง อย่างไรก็ตาม ส่วนประกอบของ modular formula ต้องมีสารอาหารครบถ้วนตามความต้องการ ของผู้ว่วยเพื่อการเจิญเติบโตที่เหมาะสม ตังนั้นผู้ป่วยจึงควรได้รับการดูแลจาก แพทย่ยู้เช่ยวชาญ และมีการิิดตามการเจริถเติบโตอย่างต่อเนื่อง

เอกสารอ้างอิง

1. Bos C, Metges CC, Gaudichon C, Petzke KJ, Pueyo ME, Morens C. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr 2003;133:1308-15.
2. ESPGAN Committee on Nutrition. Comment on the composition of soy protein based infant and follow - up formulas. Acta Paediatr Scand 1990;79:1001-5.
3. ESPGHAN Committee on Nutrition. Soy protein infant formulae and follow-on formulae: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastoenterol Nutr 2006;45:352-61.
4. Bhatia J, Greer F, Committee of Nutrition. Use of soy protein-based formulas in infant feeding. Pediatrics 2008;121:1062-8.
5. Lasekan JB, Ostrom KM, Jacobs JR, Blatter MM, Ndife LI, Gooch WM, et al. Growth of newborn, term infants fed soy formulas for 1 year. Clin Pediatr(Phila) 1999;38:563-71.
6. Mendez MA, Anthony MS, Arab L. Soy-based formulae and infant growth and development: A review. J Nutr 2002;132:2127-30.
7. Mimouni F, Campaigne B, Neylan M, Tsang RC. Bone mineralization in the first year of life in infants fed human milk, cow-milk formula, or soy-based formula. J Nutr 1993;122:348-54.
8. Setchell KDR, Zimmer-Nechemias L, Cali J, Heubi JE. Isoflavone content of infant formula and the metabolic fate of these phytoestrogens in early life. Am J Clin Nutr 1998;68(suppl):1453S-61S.
9. Vandenplas Y. Soy infant formula: Is it that bad? Acta Peadiatr 2011;100: 162-6.
10. Strom BL, Schinnar R, Zeigler EE, Bamhart KT, Sammel MD, Macones GA, et al. Exposure to soy-based formula in infancy. JAMA 2001;286:807-14.
11. Ostrum KM, Cordle CT, Schaller JP, Winship TR, Thomas DJ, Jacobs JR, et al. Immune status of infants fed soy-based formulas with or without added nucleotides for 1 year: part 1: vaccine responses and morbidity. J Pediatr Gastroenterol Nutr 2002;34:137-44.
12. Cordle CT, Winship TR, Schaller JP, Thomas DJ, Buck RH, Ostrom KM, et al. Immune status of infants fed soy-based formulas with or without added nucleotides for 1 year: part 2: immune cell populations. J Pediatr Gastroenterol Nutr 2002;34: 145-53.

Osborn DA, Sinn J. Soy formula for prevention of allergy and food 13. intolerance in infants. Cochrane Database Syst Rev 2006;18(4): CD003741.
14. Bruks AW, Casteel HB, Fiedorek SC, Williams LW, Connaughton C, Brooks JA. Enzyme-linked immunosorbent assay and immunoblotting determination of antibody response to major component proteins of soybean in patients with soy protein intolerance. J Pediatr Gastroenterol Nutr 1989;8:195-203.
15. Zeiger RS, Sampson HA, Bock SA. Soy allergy in infants and children with IgE-associated cow's milk allergy. J Pediatr 1999;134: 614-22.
16. Ahn KM, Han YA, Nam SY, Park HY, Shin MY, Lee SI. Prevalence of soy hypersensitivity in cow's milk protein-sensitive children in Korea. J Korean Med Sci 2003;18:473-7.
17. Klemola T, Vanto T, Juntunen-Backman K, Kalimo K, Korpela R, Varjonen E. Allergy to soy formula and to extensively hydrolyzed whey formula in infants with cow's milk allergy: a prospective, randomized study with a follow-up to the age of 2 years. J Pediatr 2002;40:219-24. 18. AAP committee on Nutrition. Hypoallergenic infant formulas. Pediatrics 2000;166:346-9.
19. Host A, Halken S. Hypoallergenic formulas - when, to whom and how long: after more than 15 years we know the right indication ! Allergy 2004;59 (suppl78):45-52.
20. Hernell O, Lonnerdal B. Nutritional evaluation of protein hydrolysate formulas in healthy term infants: plasma amino acids, hematology, and trace elements. Am J Clin Nutr 2003;78:296-301.
21. Niggeman B, von Berg A, Bollrath C, Berdel D, chauer U, Rieger C. Safety and efficacy of a new extensively hydrolyzed formula for infants with cow's milk protein allergy. PediatrAllergy Immunol 2008;19:348-54.
22. Mennella JA, Ventura AK, Beauchamp GK. Differential growth patterns among healthy infants fed protein hydrolysate or cow-milk formulas. Pediatrics $2011 ; 127: 110-8$.
23. German infant nutritional intervention study group. Short- and longterm effects of feeding hydrolyzed protein infant formulas on growth at < or $=6 y$ of age: results from the German infant nutritional intervention study. Am J Clin Nutr 2009;89:1846-56.
24. Rzehak P, Sausenthaler S, Koletzko S, Reinhardt D, von Berg A, Kramer U , et al. Long-term effects of hydrolyzed protein infant formulas on growth - extended follow-up to 10 y of age: results from the

German infant nutritional intervention (GINI) study. Am J Clin 2011 doi: $10.3945 / \mathrm{ajcn} .110 .000679$.
25. Osborn DA, Sinn J. Formulas containing hydrolyzed protein for prevention of allergy and food tolerance in infants. Cochrane Database Syst Rev 2006;18: CD003664.
26. von Berg A, Koletzko S, Grubl A, Filipiak-Pittroff B, Wichmann HE, Bauer CP, et al. The effect of hydrolyzed cow's milk formula for allergy prevention in the first year of life: the German Infnat Nutritional Intervention Study, a randomized double-blind trial. J Allergy Clin Immunol 2003;111:533-40.
27. Caffarelli C, Plebani A, Poiesi C, Petroccione T, Spattini A, Cavagni G. Determinant of allergenicity to three cow's milk hydrolysates and amino acid-derived formula in children with cow's milk allergy. Clin Exp Allergy 2002;32:74-9.
28. Giampietro PG, Kjellman NI, Oldaeus G, Wouters-Wesseling W, Businco L. Hypoallergenicity of an extensively hydrolyzed whey formula. Pediatr Allergy Immunol 2001;12:83-6.
29. Sampson HA, James JM, Bernhisel-Broadbent J. Safety of amino acid-derived infant formula in children allergic to cow milk. Pediatrics 1992;90:463-5.
30. Sicherer SH, Noone SA, Koerner CB, Christic L, Burks AW, Sampson HA. Hypoallergenicity and efficacy of an amino acid-based formula in children with cow's milk and multiple food hypersensitivities. J Pediatr 2001;138:668-93.
31. Hill JD, Murch SH, Rafferty K, Wallis P, Green JC. The efficacy of amino acid-based formulas in relieving the symptoms of cow's milk allergy: a systematic review. Clin Exp Allergy 2007;37:808-22.
32. Isolauri E, Sutas Y, Makinen-Kiljunen S, Oja SS, Isosomppi R, Turjanmaa K. Efficacy and safety of hydrolyzed cow milk and amino acid-derived formulas in infants with cow milk allergy. J Pediatr 1995:127:550-7.
33. Niggemann B, Binder C, Dupont C, Hadji S, Arvola T, Isolauri E. Prospecrive, controlled, multicenter study on the effect of an amino-acid-based formula in infants with cow's milk allergy/intolerance and atopic dermatitis. Pediatr Allergy Immunol 2001;12:78-82.
34. Hill DJ, Cameron DJS, Francis DEM, Agnes M, Gonzalez-Andaya AM, Hosking CS. Challenge confirmation of late-onset reactions to extensively hydrolyzed formulas in infants with multiple food protein intolerance. J Allergy Clin Immunology 1995;96:386-94.
35. McLeish CM, MacDonald A, Booth IW. Comparison of an elemental with a hydrolyzed whey formula in intolerance to cow's milk. Arch Dis Child 1995:73:211.5.
36. Jirapinyo P, Densupsoontorn N, Wongam R, Thamonsiri N. Comparisons of a chicken-based formula with soy-based formula in infants with cow milk allergy. Asia Pac J Clin Nutr 2007;16:711-5.
37. Jirapinyo P, Densupsoontorn N, Kangwanpornsiri C, Wongarn R. Chicken-based formula is better tolerated than extensively hydrolyzed casein formula for the management of cow milk protein allergy in infants. Asia Pac J Clin Nutr 2012;21:209-14.
38. Fiocchi A,Restani P, Bernardini R,Lucarelli S, Lombardi G, Magazzu G, et al. A hydrolysed rice-based formula is tolerated by children with cow's milk allergy: a multi-centre study. Clin Exp Allergy 2006;36: 311-6.
39. Reche M, Pascual C, Fiandor A, Polanco I, Rivero-Urgell M, Chifre R, et al. The effect of a partially hydrolysed formula based on rice protein in the treatment of infants with cow's milk protein allergy. Pediatr Allergy Immunol 2010: 21: 577-585.

INDEX

A

Allergic proctocolitis 19
Anaphylaxis 18

B
Beta-lactoglobulin 75
Breastfeeding 92

C
Constipation 26
Contact urticaria 18
Cow milk sensitive enteropathy 23

D

DBPCFC50

E

Eczema 21
Eosinophilic gastrointestinal disorders 18
Epitope binding IgE 36
Epitope binding $\operatorname{IgG}_{4}>36$
Extensively hydrolyzed formula 85

F
Food-specific IgE 48
FPIES19

G
Gastro-esophageal reflux 19
GI endoscopy 58
Grade of recommendation 44
H
Heiner syndrome 19
I
Isoflavones 81
L
Laryngeal obstruction 18
Level of evidence 43
M
Modular formula 88
O
Oral allergy syndrome 20
Oral food challenge 20
Oral Food Challenge Data Collection Form 57
Oral food challenge test 50
Oral provocation test 50
Oral tolerance 35
S
Skin prick test 20
Soy protein-based formula 79
U
Urticaria 18

ขอขอบคุณ
ผู้สนับสนุนการจัดทำแนวทางเวชปฏิบัติ การดูแลรักษาโรคแพ้โปรตีนนมวัว ดังต่อไปนี้

1. บริษัท มี้ด จอห์นสัน นิวทริชัน (ประเทศไทย) จำกัด
2. บริษัท ดูเม็กซ์ จำกัด
3. บริษัท เนสท์เล่ (ไทย)จำกัด
4. ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
